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Abstract
Fresán, Sabbah, and Yu constructed motives Mk

n+1(Kl) over Q encoding symmetric power moments of
Kloosterman sums in n variables. When n = 1, they use the irregular Hodge filtration on the exponential
mixed Hodge structure associated with Mk

2(Kl) to compute the Hodge numbers of Mk
2(Kl), which turn out to

be either 0 or 1. In this article, I explain how to compute the (irregular) Hodge numbers of Mk
n+1(Kl) for

n = 2 or for general values of n such that gcd(k, n + 1) = 1. I will also discuss related motives attached to
Airy moments constructed by Sabbah and Yu. In particular, the computation shows that there are Hodge
numbers bigger than 1 in most cases.
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1 Introduction
1.1 Background

Kloosterman sums in n variables are the exponential sums over finite fields defined for each prime power
q = pr and each a ∈ F×q by

Kln+1(a; q) :=
∑

x1,...,xn∈F×
q

exp
(

2πi/p · TrFq/Fp

(
x1 + · · · + xn + a

x1 · · ·xn

))
,

where TrFq/Fp
(x) is the trace from Fq to Fp. They are the finite field analogs of Bessel functions

Ben+1(z) :=
∮

(S1)n

exp
(
x1 + · · · + xn + z

x1 · · ·xn

)
dx1

x1
· · · dxn

xn
,

which satisfy the Bessel differential equations (z∂z)n+1 − z = 0.
We fix a prime ℓ ≠ p and an embedding ι : Qℓ → C. After Deligne [5, Sommes trig.], there exists a lisse

ℓ-adic local system Kln+1 of rank n+ 1 over Gm,Fq
, called the Kloosterman sheaf, such that for each a ∈ F×q ,

ι(Tr(Frobq, (Kln+1)a)) = (−1)nKln+1(a; q).

In other words, we realize the Kloosterman sums as traces of Frobenius acting on Kln+1.
For each k ≥ 1, the k-th symmetric power moments of Kloosterman sums are the integers

mk
n+1(q) := −

∑
a∈F×

q

Tr(Frobq, (SymkKln+1)a), (1.1)
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where SymkKln+1 is the k-th symmetric power of the Kloosterman sheaf. To study these moments as q varies,
we build an L-function L(k, n+ 1; s) by taking the Euler product in which the local factor at the prime p comes
from a generating series of the sequence {mk

n+1(pn)}n. Fu and Wan studied these local factors in detail [12].
A priori, the L-functions are only defined on some half-plane where the real part of s is large enough. In [10,

Thm. 1.2], Fresán, Sabbah, and Yu proved that when n = 1, the L-functions L(k, 2; s) extend meromorphically
to the complex plane and satisfy some functional equations conjectured by Broadhurst and Roberts in [3, 4].

By the construction of L(k, n + 1; s), the local factors in the Euler product come from the characteristic
polynomials of Frobenius acting on the middle ℓ-adic cohomologies of SymkKln+1 (i.e., the images of the compact
support cohomologies in the usual cohomologies). Inspired by the analogy between Kloosterman sums and Bessel
functions, Fresán, Sabbah, and Yu considered the Kloosterman connection, also denoted by Kln+1, which is
the rank n+ 1 connection on Gm,C corresponding to the Bessel differential equation (z∂z)n+1 − z = 0. They
interpret the middle de Rham cohomology of the connection SymkKln+1 as the de Rham realization of a Nori
motive Mk

n+1(Kl) over Q, which admits a geometric description as a subquotient of Hnk−1
c (K)(−1). Here K is

the hypersurface defined by the Laurent polynomial

gk =
k∑

i=1

( n∑
j=1

yi,j + 1∏n
j=1 yi,j

)

in the torus Gnk
m , see [10, (3.1)] and Remark 3.8.

The ℓ-adic realizations of Mk
n+1(Kl) give rise to a family of ℓ-adic Galois representations, whose L-functions

coincide with L(k, n+ 1; s). To relate L(k, n+ 1; s) with L-functions of analytic objects, one relies on a potential
automorphy theorem of Patrikis–Taylor [23]. To apply this theorem, one must check the crucial assumption that
the Hodge numbers of the de Rham realization of Mk

n+1(Kl) are either 0 or 1. When n = 1, this condition is
verified by [10, Thm. 1.8].

1.2 Main theorem
Let Mk

n+1(Kl)dR be the de Rham realizations of Mk
n+1(Kl), which underlie pure Hodge structures of weight

nk + 1. In this article, we compute the Hodge numbers of Mk
n+1(Kl)dR for n > 1.

Theorem 1.2. 1. Assume that gcd(k, n + 1) = 1. The Hodge numbers hp,nk+1−p of Mk
n+1(Kl)dR are the

coefficients of tpxk in the formal power series expansion of the rational function

(1 − t)tn+1

(1 − tn+1)(1 − x)(1 − tx) · · · (1 − tnx)

if p ≤ nk+1
2 , and we have hp,nk+1−p = hnk+1−p,p if p > nk+1

2 .

2. Assume that n = 2 and 3 | k. The Hodge numbers hp,2k+1−p of Mk
3(Kl)dR are given by

hp,2k+1−p =
{

⌊ p
6 ⌋ − δp,k p ≡ 0, 1, 2, 4 mod 6,

⌊ p
6 ⌋ + 1 p ≡ 3, 5 mod 6,

if p ≤ k, and we have hp,2k+1−p = h2k+1−p,p if p > k. Here δp,k is the Kronecker symbol.

Remark 1.3. The above theorem is a crucial ingredient in proving a generalization of the work of Fresán–
Sabbah–Yu in the author’s forthcoming paper [24] to those Mk

n+1(Kl) having Hodge numbers either 0 or 1, such
as when n = 2 and k ≤ 9. However, we find that in most cases, Mk

n+1(Kl) can have Hodge numbers bigger than
1. For example, the Hodge numbers of M10

3 (Kl)dR are given by

(hp,21−p)0≤p≤21 = (0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 0).

There is a parallel story for Airy moments. The Airy sums are exponential sums defined for each prime
power q = pr and each a ∈ F×q by

Ain(a; q) :=
∑
x∈Fq

exp
(
2πi/p · TrFq/Fp

(
xn+1 − a · x

))
.
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They are finite field analogs of Airy functions

Ain(z) :=
∫ ∞

0
exp

( 1
n+ 1x

n+1 − z · x
)

dx,

which satisfy the Airy differential equation1 ∂n
z − z = 0. Like Kloosterman sums, we interpret Airy sums as

traces of Frobenius acting on some ℓ-adic local system Ain over A1
Fq

. The k-th symmetric power moments of
Airy sums are the algebraic integers

−
∑
a∈Fq

Tr(Frobq, (SymkAin)a).

Sabbah and Yu constructed ulterior motives Mk
n(Ai) attached to the k-th symmetric power moments of Airy

sums in the sense of [2]. Contrary to the motives attached to Kloosterman moments, the de Rham realizations
of Mk

n(Ai) underlie finite monodromic mixed Hodge structures [29, §2], which are pure of weight k + 1 with
Q-indexed Hodge filtration. When n = 1, they computed the Hodge filtration of Mk

2(Ai)dR, whose Hodge
numbers are either 0 or 1 [29, Thm. 1.1]. In the following theorem, we calculate the Hodge numbers of Mk

n(Ai)dR
for n > 1 when gcd(k, n) = 1.

Theorem 1.4. Assume that gcd(k, n) = 1. The possible jumps of the Q-indexed Hodge filtration on Mk
n(Ai)dR

occur at p+n+k
n+1 for 0 ≤ p ≤ nk− n− k + 1, and the Hodge numbers h

p+n+k
n+1 , nk+1−p

n+1 are the coefficients of tpxk in
the formal power series expansion of the rational function

1 − t

(1 − tn)(1 − x)(1 − tx) · · · (1 − tn−1x) .

In addition to the above cases of symmetric power moments of Kloosterman sums and Airy sums, we also deal
with moments for reductive groups, defined by replacing SymkKln+1 with Kloosterman sheaves for reductive
groups from [16] in the formula (1.1), see Propositions 5.30. In [24], we use Hodge numbers of two-dimensional
motives to solve some conjectures of Evans type, raised by Yun in [34], relating the symmetric power moments
of Kloosterman sums with Fourier coefficients of modular forms.

1.3 Sketch of the proof
The proof relies on the irregular Hodge theory, developed in a series of works such as [6, 26, 33, 7, 28, 27].

We take the proof of Theorem 1.2 as an example here.

• In [10], Fresán, Sabbah, and Yu first constructed the motives Mk
n+1(Kl) as exponential motives (in the

sense of [9]) and then showed them to be isomorphic to (classical) motives. Inspired by the exponential
motivic nature of Mk

n+1(Kl), they showed that the de Rham realizations Mk
n+1(Kl)dR underlie exponential

mixed Hodge structures, as defined by Kontsevich and Soibelman [20]. Since each exponential mixed Hodge
structure is equipped with an irregular Hodge filtration [10, Prop. A.10], there are both classical and
irregular Hodge filtration on Mk

n+1(Kl)dR. Fortunately, these two types of filtration coincide [10, A.13]. So,
it suffices to calculate the irregular Hodge filtration on Mk

n+1(Kl)dR.

• Let fk : Gnk+1
m → A1 be the Laurent polynomial

k∑
i=1

( n∑
j=1

xi,j + z∏
j xi,j

)
.

The twisted de Rham cohomology Hk(Gnk+1
m , fk) of the pair (Gnk+1

m , fk) is defined as the hypercohomology
Hk

(
Ω•Gnk+1

m
, d+dfk

)
, which also underlies an exponential mixed Hodge structure [10, Def. A.18]. We embed

Mk
n+1(Kl)dR in Hnk+1

dR (Gnk+1
m , fk) via the inclusion (5.1), which is compatible with their irregular Hodge

filtrations.
1We use the integral of exp( 1

n+1 xn+1 − z · x) instead of exp(xn+1 − z · x) to define Ain(z), because we want Ain(z) to satisfy
the differential equations ∂n

z − z = 0.
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• Then we suitably choose a basis for each Mk
n+1(Kl)dR. In the proof of [10, Thm. 1.6] for the case n = 1,

Fresán, Sabbah and Yu found an explicit basis for Mk
2(Kl)dR through the identification of Mk

n+1(Kl)dR

with the middle de Rham cohomology of SymkKln+1.
For n > 1, it is more complicated to get explicit bases for Mk

n+1(Kl)dR following their approach due to the
complexity of the de Rham cohomology of SymkKln+1. The most significant difficulty comes from the
matrix Nk in the differential (4.17) of the de Rham complex of SymkKln+1 in (4.18). The matrix Nk is in
fact the nilpotent part of the local monodromy operator of the connection SymkKln+1 at 0. When n = 1,
it is always nilpotent with one single Jordan block, while it is nilpotent with several Jordan blocks when
n > 1 and k > 1.
This key point of this article is that the irregular Hodge filtration on Mk

n+1(Kl)dR depends not on an
explicit basis but on the degree defined in (4.11). With the help of a counting result (Proposition 4.3), we
choose bases for Mk

n+1(Kl)dR with prescribed degrees in Theorems 4.16 and 4.26, which are good enough
for our purpose.

• If gcd(k, n + 1) = 1 (in Theorem 1.2 only the motives M3k
3 (Kl) do not satisfy this condition), by the

work of Adolphson–Sperber, Esnault–Sabbah–Yu, and Yu [1, 7, 33], the filtration on the twisted de Rham
cohomology Hnk+1

dR (Gnk+1
m , fk) has a geometric interpretation in terms of the so-called Newton polyhedron

filtration, see Section 3.2. In Lemma 5.4, we show that each element ω in the basis for Mk
n+1(Kl)dR lies in

F p(ω)Hnk+1
dR (Gnk+1

m , fk)

for an integer p(ω) depending only on the degree of ω. We deduce that ω lies in F p(ω)Mk
n+1(Kl)dR.

Thanks to our suitably chosen bases, we conclude using the Hodge symmetry and our counting result
(Proposition 4.3) that each ω defines a nonzero class in grp(ω)

F Mk
n+1(Kl)dR in Theorem 5.6. Hence, the

elements of the bases are adapted to the Hodge filtration, and we get the Hodge numbers of Mk
n+1(Kl)dR.

• If gcd(k, n + 1) > 1, as in the case where k is even in [10, 29], we need extra information to finish the
calculation. For the case of the motives M3k

3 (Kl), see Sections 5.2.1, 5.2.2, and 5.2.3. In general, we expect
that the same argument works for Mk

n+1(Kl) when the nilpotent part of the local monodromy operator of
SymkKln+1 at 0 has Jordan blocks of different sizes, which is the case of Sym4Kl4, for example.

1.4 Organization of the paper
In Section 2, we recall some notation from the theory of D-modules and some basic properties of Kloosterman

and Airy connections. In Section 3, we recall the definition of exponential mixed Hodge structures and the
construction of exponential mixed Hodge structures attached to Kloosterman and Airy moments. Next, we
determine the bases of cohomology classes of the de Rham cohomologies of Kloosterman and Airy connections in
Section 4. In Section 5, we prove Theorems 1.2 and 1.4.
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2 Properties of Kloosterman and Airy connections
In this section, we gather some properties of Kloosterman and Airy connections, namely those concerning

the local structures at 0 and ∞, the irregularities, and the dimensions of their de Rham cohomologies.

2.1 Notation for D-modules
We recall some facts from the theory of D-modules. For details, see [17] for example.
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Let X be a smooth algebraic variety over C. We denote by DX the sheaf of differential operators on X,
which is a subsheaf of EndCX

(OX), generated by OX (acting on OX by left multiplication), and the sheaf of
vector fields ΘX = (Ω1

X)∨. For example, if X = A1, the sheaf DX is associated with the Weyl algebra C[t]⟨∂t⟩,
satisfying ∂t · t − t · ∂t = 1. A left (resp. right) DX -module is an OX -module with a left (resp. right) action
of DX . When X is affine, we identify DX -modules with their global sections. For example, DA1-modules are
identified with C[t]⟨∂t⟩-modules. We denote by Mod(DX) the category of (left) DX -modules on X, and by
Db(DX) the bounded derived category of DX -modules.

Let f : X → Y be a morphism of smooth complex varieties. Let DX→Y and DY←X be the transfer modules
associated with f . For a complex of DX -modules M and a complex of DY -modules N , the direct image of M
and the inverse image of N are defined by

f+M = Rf∗(DY←X ⊗L
DX

M) ∈ Db(DY )

and

f+N = DX→Y ⊗L
f−1DY

f−1N ∈ Db(DX)

respectively. Let DX and DY be the duality functors. We put f† = DY ◦ f+ ◦ DX . Then there is a canonical
forget supports morphism f†M → f+M , which is an isomorphism if f is proper.

A DX -module is called holonomic if the dimension of its characteristic variety is equal to dimX. We denote
by Db

h(DX) the full subcategory of Db(DX) whose objects are complexes with holonomic cohomologies.

2.1.1 De Rham cohomology

For a DX -module M , we denote by DR(M) its de Rham complex ΩX ⊗L
OX

M . The de Rham cohomology
Hr

dR(X,M) of a DX -module M is the hypercohomology of the de Rham complex of M , which is finite-dimensional
if M is holonomic.

Now let j : U ↪→ X be the inclusion of an open subvariety U in a projective smooth variety X, whose
complement is a divisor D. For a connection on U , i.e., a locally free DU -module M , the de Rham cohomology
with compact support Hr

dR,c(U,M) is the hypercohomology of DR(j†M). We denote by j†+M the intermediate
extension of M , which is the DX -module N such that j+N = M and N admits no subobjects or quotient objects
supported on D.

If X is a curve, we denote by Hr
dR,mid(U,M) the middle de Rham cohomology of M , i.e., the image of the de

Rham cohomology with compact support in the usual de Rham cohomology. It is identified with the de Rham
cohomology H1

dR(X, j†+M) of the intermediate extension j†+M [11, (3.1)].

2.1.2 The Fourier transform

Let prt and prτ be the projections of A1
t × A1

τ to the first and the second factors respectively. We denote by
Etτ the rank 1 connection (OA1

t×A1
τ
, d + d(tτ)) on A1

t × A1
τ . Then the Fourier transform of a DA1

t
-module M on

A1
t is given by

FTM = prτ+
(
pr+

t M ⊗OA1×A1 Etτ
)
.

If M is a holonomic DA1
t
-module, its Fourier transform is a holonomic DA1

τ
-module.

2.1.3 The nearby cycle and the vanishing cycle functors

Let f : X → A1 be a regular function. In terms of the Kashiwara–Malgrange filtration of a holonomic
DX -module M , we can define the nearby cycle ψfM and the vanishing cycle ϕfM of M , which are holonomic
DX -modules supported on f−1(0).

By construction, there is an automorphism T on both ψfM and ϕfM . So we can decompose them, and
denote by ψf,λM and ϕf,λ the generalized eigenspaces corresponding to an eigenvalue λ ∈ C×. If λ ̸= 1, there is
an isomorphism ψf,λM ≃ ϕf,λM compatible with the automorphism T . If λ = 1, there are morphisms can and
var as follows:

ψf,1M ϕf,1M,

can

var

such that exp(2πi var ◦ can) and exp(2πi can ◦ var) are equal to the unipotent automorphisms T on ψf,1M and
ϕf,1M respectively. The nilpotent endomorphisms var ◦ can and can ◦ var on ψf,1M and ϕf,1 are denoted by N .
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2.2 Kloosterman connections
Let {xi}1≤i≤n and z be the coordinates of Gn+1

m , and we consider the diagram

Gn+1
m

A1
x Gm,z

przf (2.1)

where

f(xi, z) =
n∑

i=1
xi + z∏n

i=1 xi
, (2.2)

and prz is the projection to Gm,z. The Kloosterman connection is defined as

Kln+1 := H0prz+f
+Ex,

where Ex denotes the rank 1 vector bundle with connection (OA1 ,d + dx). Besides, we consider the pullback
K̃ln+1 := [n+ 1]+Kln+1 of Kln+1 along the cover

[n+ 1] : Gm,t → Gm,z, t 7→ tn+1 = z.

Notice that µn+1 is the automorphism group of the cover [n+ 1]. We can recover the connection Kln+1 as the
µn+1-invariants of [n+ 1]+K̃ln+1.

Proposition 2.3. The Kloosterman connections have the following properties:

1. Kln+1 is a free OGm
-module of rank n+ 1, whose connection, in terms of some basis {v0, v1, . . . , vn}, is

given by
d +N

dz
z

+ E dz, (2.4)

where N is the lower triangular Jordan block of size n + 1 with eigenvalue 0, and E is the matrix with
entry 1 at row 1 and column n+ 1 and with entries 0 elsewhere.

2. Kln+1 has a regular singularity at 0 and an irregular singularity at ∞ of slope 1
n+1 .

3. We have an isomorphism

Kl∨n+1 ≃ ι+n+1Kln+1

where Kl∨n+1 is the dual of Kln+1, and ιn+1 is the involution z 7→ (−1)n+1z.

Proof. These are the first three properties in [10, Prop. 2.4].

From the first property above, the Kloosterman connections are examples of Frenkel–Gross connections for
SLn+1 [8, §6.1]. We denote by SymkKln+1 (resp. SymkK̃ln+1) the k-th symmetric power of Kln+1 (resp. K̃ln+1),
which is of rank

(
n+k

k

)
.

2.2.1 The local structures at 0

We study the formal local structures at 0 of SymkKln+1 and SymkK̃ln+1. Let V = Cn+1 be the standard
representation of SLn+1, and Vk := SymkV the k-th symmetric power of the representation V . We denote by
{v0, . . . , vn} the standard basis for V and by N the matrix

N =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0

 .
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By construction, we have Nvi = vi+1 for i = 0, . . . , n− 1 and Nvn = 0. The action of N on V can be enhanced

to a Lie algebra representation ρ : sl2 → End(V ), such that ρ
(

0 0
1 0

)
= N , ρ

(
1 0
0 −1

)
= diag(n, n− 2, . . . ,−n),

and ρ

(
0 1
0 0

)
is a matrix with nonzero items i(i− 1 − n) at i-th column and (n+ 1 − i)-th row. Using ρ, we

view Vk as a representation of sl2, such that ρ
(

0 0
1 0

)
= SymkN . For simplicity, we denote Nk := SymkN .

Recall that the category of representations of sl2 is semisimple, and all irreducible representations of sl2 are
of the form Symd(C2). In the following lemma, we make the decomposition of Vk into irreducible representations
explicit.

Lemma 2.5. As representations of sl2, we have

Vk =
⌊nk

2 ⌋⊕
d=0

Symnk−2d(C2)⊕qd,k ,

where qd,k are the coefficients of td in the formal power series expansion of

Qk(t) = (1 − tn+1) · · · (1 − tn+k)
(1 − t2) · · · (1 − tk) .

In particular, the cokernel of Nk on Vk has dimension
∑⌊nk

2 ⌋
d=0 qd,k.

Proof. The representation Vk is of the form
⊕

d=0 Symd(C2)pd,k . Fu and Wan showed that pd,k are those numbers
ck(d) − ck(d− 1) from [13, p. 559] and gave the formula of pd,k in2 [13, Thm. 0.1].

The formal structures of the connections SymkKln+1 and SymkK̃ln+1 at 0 are isomorphic to

C((z)) ⊗C[z,z−1] SymkKln+1 ≃
(

O(n+k
n )

Gm
,d −Nk

dz
z

)
and

C((t)) ⊗C[t,t−1] SymkK̃ln+1 ≃
(

O(n+k
n )

Gm
,d − (n+ 1)Nk

dt
t

)
respectively. Using Lemma 2.5, we have the following result:

Proposition 2.6. The formal structures of the connections SymkKln+1 and SymkK̃ln+1 at 0 are isomorphic to

⌊nk
2 ⌋⊕

d=0

(
Onk−2d+1

Gm
,d − Jnk−2d+1(0)dz

z

)⊕qd,k

and
⌊nk

2 ⌋⊕
d=0

(
Onk−2d+1

Gm
,d − (n+ 1)Jnk−2d+1(0)dt

t

)⊕qd,k

respectively, where each matrix Jnk−2d+1(0) represents a Jordan block of size nk − 2d+ 1 with eigenvalue 0.

Corollary 2.7. Let Soln0 and S̃oln0 be the dimensions of the formal solution spaces Hom(C((z))⊗SymkKln+1,C((z)))
and Hom(C((t)) ⊗ SymkK̃ln+1,C((t))) respectively. Then Soln0 = S̃oln0 =

∑⌊nk
2 ⌋

d=0 qd,k.

Proof. Let M be SymkKln+1 or SymkK̃ln+1 and j0 : Gm ↪→ A1 the inclusion. By Lemma 2.5 and Proposition 2.6,
we know that the cokernel of

j0†+M → j0+M

is supported at 0, of rank
∑⌊nk

2 ⌋
d=0 qd,k. Hence, Soln0 =

∑⌊nk
2 ⌋

d=0 qd,k by [19, Prop. 2.9.8].
2Our formula is slightly different from the original formula in [13, Thm. 0.1] because we study SymkKln+1 instead of SymkKln.
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Example 2.8. If n = 2, the representation Vk is of the form

⌊ k
2 ⌋⊕

d=0
Sym2k−2d(C2),

and Soln0 =
∑k

d=0 qd,k is 1 + ⌊ k
2 ⌋.

2.2.2 The local structures at ∞

We study the formal local structures of SymkKln+1 and SymkK̃ln+1 at ∞. Let [n + 1]: Gm,t → Gm,z be
the (n+ 1)-th power map and [2] : Gm,s → Gm,t the square map, with Galois groups µn+1 and µ2 respectively.
We denote by ζ a primitive 2(n + 1)-th root of unity, by ζn+1 the square of ζ, and by L−1 the connection
(OGm ,d + 1

2
dt−1

t−1 ) on Gm,t. If there is no confusion, we also use the same symbol Et and L−1 to denote their
formal completions at ∞ for simplicity.

Let K̂ln+1 (resp. ̂̃Kln+1) be the formal connection C((z−1)) ⊗C[z,z−1] Kln+1 (resp. C((t−1)) ⊗C[t,t−1] K̃ln+1).
The formal local structures of Kln+1 and K̃ln+1 are determined in the following lemma:

Lemma 2.9. We have isomorphisms of formal connections

K̂ln+1 ≃ [n+ 1]+
(
E(n+1)t ⊗ L⊗n

−1
)

≃
(

[2n+ 2]+E(n+1)s2
)µ2,χn

, (2.10)

and ̂̃Kln+1 ≃
n⊕

i=0
E(n+1)ζit ⊗ L⊗n

−1 . (2.11)

Here χ is the unique quadratic character of µ2, and the exponent (µ2, χ
n) means taking the χn-isotypic components.

Proof. Let inv : Gm,z → Gm,z be the inversion map z 7→ z−1 and j : Gm,z ↪→ A1
z the inclusion map. By [10,

Lem. 2.5], we have

Kln+1 = j+FT(j+inv+Kln)

for each n ∈ N>0, where Kl1 = Et. We prove the first isomorphism in the formula (2.10) by induction on n.
The case that n = 1 is verified by the equation (4.3) in loc. cit. Assume that the formula for Kln holds.

Let j∞ : Gm ↪→ P1\{0} be the inclusion. Applying the formal stationary phase formula [25, Thm 5.1] to
j∞+Kln+1 = j∞+j

+FT(j+inv+Kln), in other words, to ρ = tn+1, φ = (n+ 1)t and R = L⊗(n−1)
−1 according to

the notation in loc. cit., we have the first part of the formula (2.10).
The second isomorphism in (2.10) follows from

[n+ 1]+
(
E(n+1)t ⊗ L⊗n

−1
)

≃ [n+ 1]+
(

E(n+1)t ⊗
(

[2]+
(
C((s−1))

))µ2,χn)
≃ [n+ 1]+

(
[2]+E(n+1)s2

)µ2,χn

≃
(

[2n+ 2]+E(n+1)s2
)µ2,χn

,

where we use the isomorphism L⊗n
−1 =

(
[2]+C((s−1))

)µ2,χn

in the first isomorphism and the projection formula
in the second isomorphism.

At last, let M be the connection (OGm,z
,d + 1

2n+2
dz
z ). By the projection formula, we have

̂̃Kln+1 = [n+ 1]+
(
[n+ 1]+(E(n+1)t ⊗ L⊗n

−1 )
)

= [n+ 1]+
(
[n+ 1]+(E(n+1)t) ⊗M⊗n

)
= [n+ 1]+[n+ 1]+E(n+1)t ⊗ [n+ 1]+M⊗n.

Therefore, we get (2.11) by the isomorphism [n + 1]+[n + 1]+E(n+1)t =
⊕n

i=0 E(n+1)ζit [25, Lem. 2.4] and
[n+ 1]+M = L−1.
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For each multi-index I = (I0, . . . , In) in Nn+1, we denote by CI the complex number
∑n

i=0 Iiζ
i. Let d(k, n+1)

be the cardinality of the set {
I ∈ Nn+1

∣∣∣ |I| :=
n∑

j=0
Ij = k, CI = 0

}
. (2.12)

We determine the formal structures of SymkK̃ln+1 at ∞ in the following proposition:

Proposition 2.13. 1. We have an isomorphism of formal connections

Symk̂̃Kln+1 =
⊕

|I|=k, CI=0

L⊗nk
−1

⊕ ⊕
|I|=k, CI ̸=0

E(n+1)CI t ⊗ L⊗nk
−1 .

2. The irregularities of SymkKln+1 and SymkK̃ln+1 at ∞ are
((

n+k
n

)
−d(k, n+1)

)/
(n+1) and

(
n+k

n

)
−d(k, n+1)

respectively.

Proof. 1. By taking the symmetric power of (2.11), we have

Symk̂̃Kln+1 = Symk
(

⊕n
i=0E(n+1)ζit

)
⊗ L⊗nk

−1 =
⊕
|I|=k

E(n+1)CI t ⊗ L⊗nk
−1 .

Then notice that when CI = 0, we have E(n+1)CI t = OA1 .
2. The irregularity of Eλt at ∞ is 1 if λ ̸= 0 and 0 if λ = 0. By the local structure of SymkK̃ln+1, the irregularity
of SymkK̃ln+1 at ∞ is rk SymkK̃ln+1 − d(k, n+ 1), i.e., the number of I such that CI ̸= 0.

Recall that we have [n+1]+[n+1]+Eat =
⊕n

i=0 Ea·ζi
n+1 for a ̸= 0. By the definition of slopes (see [18, (2.2.5)]),

we deduce that [n+ 1]+Eat is of rank n+ 1 and slope 1
n+1 . Therefore, the irregularity of [n+ 1]+E(n+1)CI t at ∞

is 1 if CI ̸= 0, and the irregularity of SymkKln+1 at ∞ is Irr(SymkK̃ln+1)/(n+ 1).

Next, we determine the dimensions of the formal solution spaces at ∞ of symmetric power of Kloosterman
connections, an analog of the work of Fu–Wan for ℓ-adic sheaves [12].

The element σ = (0, . . . , n) ∈ Sn+1 acts on the set of multi-indices by

σ · I = (In, I0, . . . , In−1).

Let a(k, n+ 1) be the cardinality of the set

Σ(k, n+ 1) :=
{
I | |I| =

n∑
i=0

Ii = k, CI = 0
}/

(I ∼ σ · I), (2.14)

i.e., the set of orbits of multi-indices with |I| = k and CI = 0. We denote by b(k, n+ 1) the cardinality of the set

{
[I] ∈ Σ(k, n+ 1)

∣∣∣ n∑
i=0

(−1)
∑n

j=n+1−i
Ijσi · I ̸= 0 in Z[Nn+1]

}
. (2.15)

Proposition 2.16. Let Soln∞ and S̃oln∞ be the dimensions of the solution spaces Hom(SymkK̂ln+1,C((z−1)))
and Hom(Symk̂̃Kln+1,C((t−1))) respectively. Then

1. S̃oln∞ is d(k, n+ 1) if 2 | nk and 0 otherwise.

2. Soln∞ is


a(k, n+ 1) 2 | n,
0 2 ∤ nk,
b(k, n+ 1) else.

Proof. Let M be either SymkKln+1 or SymkK̃ln+1 and j∞ : Gm ↪→ P1\{0} be the inclusion. The rank of the
cokernel of the injective morphism

j∞†+M → j∞+M

9



is Soln∞ or S̃oln∞, see [19, Prop. 2.9.8].
1. By Proposition 2.13, the direct summand E(n+1)CI t ⊗ L⊗nk

−1 is trivial if and only if CI = 0 and 2 | nk. So the
number S̃oln∞ is d(k, n+ 1) if 2 | nk and 0 otherwise.
2. Recall that the cover [2n+ 2] : Gm,s → Gm,z of Gm,z has Galois group µ2n+2. We have an isomorphism

Kln+1 =
(
[2n+ 2]+[2n+ 2]+Kln+1

)µ2n+2
.

We deduce from the above that

SymkKln+1 =
(
[2n+ 2]+Symk

(
[2n+ 2]+Kln+1

))µ2n+2
.

We choose a generator e of E(n+1)s2 . The set {sie | 0 ≤ i ≤ 2n + 1, i ≡ n (mod 2)} is a basis for K̂ln+1 =(
[2n+ 2]+E(n+1)s2)µ2,χn

. Let ei be the element s−2i ⊗ s2ie (resp. s−2i−1 ⊗ s2i+1e) in [2n+ 2]+K̂ln+1 when 2 | n
(resp. 2 ∤ n) for 0 ≤ i ≤ n. Then we choose the set {ei | 0 ≤ i ≤ n} as a basis for [2n+ 2]+K̂ln+1. By [25, (1.2)],
we have

s∂s · ei = (2n+ 2)s2ei+1 (2.17)

for 0 ≤ i ≤ n (we take en+1 = e0). Let fj =
∑n

i=0 ζ
−2ijei (resp.

∑n
i=0 ζ

−(2i+1)jei) for 0 ≤ j ≤ n if 2 | n (resp.
2 ∤ n). Since ζ · s−i ⊗ sie = (ζ · s−i) ⊗ sie = ζ−is−i ⊗ sie. We have

ζ · fj = fj+1 for 0 ≤ j ≤ n− 1, and ζ · fn = (−1)nf0.

By (2.17), each fj generates a copy of E(n+1)ζjs2 in [2n+ 2]+Kln+1, and we have

[2n+ 2]+K̂ln+1 =
n⊕

j=0
E(n+1)ζjs2

.

Taking the symmetric power on both sides, we have

[2n+ 2]+SymkK̂ln+1 =
⊕

I∈Nn+1, |I|=k

C((s−1))
⊕ ⊕

I∈Nn+1, |I|=k

E(n+1)CI s2
,

and each component for I is generated by f I :=
∏n

j=0 f
Ij

j . Notice that the action of µ2n+2 on the basis {f I} is
given by

ζ · f I = (−1)n·InfσI .

The number Soln∞ = dim Hom(SymkK̂ln+1,C((z−1))) is the rank of trivial connections in the fixed part of⊕
I s.t. CI =0 C((s−1)) under the action of µ2n+2, which is generated by the set

{2n+1∑
i=0

ζi · f I | CI = 0
}
.

If 2 ∤ nk, since ζn+1 · f I = (−1)nkf I = −f I , each sum of the form
∑2n+1

i=0 ζi · f I is 0. So Soln∞ = 0. If 2 | n
(resp. 2 ∤ n and 2 | k), we can check that Σ has cardinality a(k, n+ 1) (resp. b(k, n+ 1)).

2.2.3 The dimension of the de Rham cohomologies

We compute the dimension of the de Rham cohomologies of SymkKln+1 and SymkK̃ln+1. Recall that qd,k,
d(k, n+ 1), a(k, n+ 1), and b(k, n+ 1) are numbers defined in Lemma 2.5, (2.12), (2.14), and (2.15) respectively.

Proposition 2.18. The dimensions of H1
dR(Gm,SymkKln+1) and H1

dR(Gm,SymkK̃ln+1) are

1
n+ 1

((
n+ k

n

)
− d(k, n+ 1)

)
and

(
n+ k

n

)
− d(k, n+ 1)

respectively.
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Proof. Let M be either SymkKln+1 or SymkK̃ln+1. By an analog of the Grothendieck–Ogg–Shafarevich formula
[19, 2.9.8.2], we have

χ(Gm,M) = −Irr∞(M).

Since Gm is affine, we have H2
dR(Gm,M) = 0. By [10, Prop. 2.7], M is irreducible, which implies that

H0
dR(Gm,M) = 0. So the only non-vanishing cohomology of M is H1

dR(Gm,M). Therefore, the dimension of
H1

dR(Gm,M) is equal to the irregularity of M at ∞ that we computed in Proposition 2.13.

Corollary 2.19. The dimensions of H1
dR,mid(Gm,SymkKln+1) and H1

dR,mid(Gm,SymkK̃ln+1) are

1
n+ 1

((
n+ k

n

)
− d(k, n+ 1)

)
−
⌊nk

2 ⌋∑
d=0

qd,k −


a(k, n+ 1) 2 | n,
0 2 ∤ nk,
b(k, n+ 1) else,

and (
n+ k

n

)
− d(k, n+ 1) −

⌊nk
2 ⌋∑

d=0
qd,k −

{
d(k, n+ 1) 2 | nk,
0 else,

respectively.

Proof. Applying [19, Cor. 2.9.8.1] to j†+SymkKln+1, where j : Gm ↪→ P1 is the inclusion, we have

χ(P1, j†+SymkKln+1) = χ(Gm,SymkKln+1) + Soln0 + Soln∞.

So we conclude the dimension formula for the middle de Rham cohomology of SymkKln+1 by Corollary 2.7 and
Proposition 2.16. We can similarly compute the dimension formula for the middle de Rham cohomology of
SymkK̃ln+1.

Example 2.20. If n = 2, the dimensions of the de middle de Rham cohomologies H1
dR,mid(Gm,SymkKl3) and

H1
dR,mid(Gm,SymkK̃l3) are

k(k + 1)
6 − 1

3d(k, 3) − 1 −
⌊k

2

⌋
− a(k, 3)

and
k(k + 1)

2 − 1 −
⌊k

2

⌋
− 2d(k, 3)

respectively, where d(k, 3) = a(k, 3) is 0 if 3 ∤ k and 1 if 3 | k.

2.3 Airy connections
We recall some basic results from [29, §6] about Airy connections. Let n ≥ 2 be an integer. Consider the

diagram
A1

x × A1
z

A1
x A1

z

f prz

where

f(x, z) = 1
n+ 1x

n+1 − xz (2.21)

and prz is the projection to A1
z. Here, we use the same letter f for both Laurent polynomials in (2.2) and (2.21)

because they play the same roles in the two parallel sides of Kloosterman and Airy moments. We define the
Airy connection by

Ain := H0prz+f
+Ex.

Equivalently, the Airy connection Ain is the (negative) Fourier transform of Exn+1/n+1.
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Proposition 2.22. The Airy connections have the following properties.

1. Ain is a free OA1-module of rank n, whose connection is given by

d +Ndz + zE dz, (2.23)

in terms of some basis {v0, v1, . . . , vn−1}, where N and E are the same matrices in (2.4).

2. The connection Ain has an irregular singularity at ∞, with slope n+1
n .

3. We have an isomorphism

Ai∨n ≃ ι+n Ain

where Ai∨n is the dual of Ain, and ιn is the involution z 7→ (−1)nz.

Proof. The first statement is proven in [29, Lem. 6.1]. The second and the third ones are proven in Lemma 6.4
and the paragraph below in loc. cit.

Proposition 2.24. We denote by SymkAin the k-th symmetric power of Ain. Then

1. SymkAin has rank
(

k+n−1
n−1

)
,

2. SymkAin is irreducible,

3. If gcd(k, n) = 1, the de Rham cohomologies and the middle de Rham cohomologies of SymkAin coincide,
and their dimensions are 1

n

(
k+n−1

n−1
)

Proof. The first statement is straightforward because rk Ain has rank n. The second statement is proven in [29,
Lem. 6.6]. The last statement is deduced from Corollary 6.9 in loc. cit.

3 Motives and Exponential mixed Hodge structures
In this section, we quickly recall the construction of the motives Mk

n+1(Kl) and Mk
n(Ai) as exponential

motives, although they are Nori motives and ulterior motives respectively. The de Rham realizations of these
motives underlie some exponential mixed Hodge structures, which agree with the mixed Hodge structures and
the finite monodromic mixed Hodge structures on Mk

n+1(Kl)dR and Mk
n(Ai)dR respectively.

3.1 Preliminary on Exponential mixed Hodge structures
We recall some basic properties of exponential mixed Hodge structures from [10, Appx.].
Let X be a smooth complex algebraic variety. The category MHM(X) of mixed Hodge modules on X is an

abelian category. In particular, if X is a point, the category is nothing but the category of polarized mixed
Hodge structures. The bounded derived categories Db(MHM(X)) admit the six functor formalism. For more
details about mixed Hodge modules, see [31].

The category EMHS of exponential mixed Hodge structures is defined in [20] as the full subcategory of
MHM(A1) whose objects NH have vanishing cohomology on A1, i.e., satisfying π∗N

H = 0 for the structure
morphism π : A1 → Spec(C).

Let j : Gm → A1 be the inclusion and s : A1 × A1 → A1 the summation map. The functor

NH 7→ s∗(NH ⊠ j! QH
Gm

), (3.1)

is exact and defines an endofunctor Π: MHM(A1) → MHM(A1), which is a projector onto EMHS. By abuse
of notation, we also denote by Π the endofunctor on the category of regular holonomic DA1-modules, defined
by sending N 7→ s+(N ⊠ j0†OGm). In particular, the endofunctor in (3.1) is the lifting of the endofunctor for
holonomic D-modules.

If we view the category of polarizable mixed Hodge structures as the category of mixed Hodge modules at
the point 0, we can embed it into EMHS as a full subcategory via the functor

V H 7→ Π
(
i0!V

H)
. (3.2)
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We define for each object Π(NH) in the category EMHS a weight filtration WEMHS on NH in terms of that
on NH, i.e., WEMHSΠ(NH) := Π(WMHM

n NH). If there is no confusion, we omit the superscript of WEMHS for
simplicity.

The de Rham fiber functor from EMHS to VectC is defined by

Π(NH) 7→ H1
dR(A1,Π(N) ⊗ Eθ), (3.3)

where N is the underlying D-module of NH, θ is the coordinate of A1, and Eθ denotes the rank 1 connection
(OA1 ,d + dθ). Each de Rham fiber is equipped with a weight filtration W•. Moreover, one can associate an
irregular Hodge filtration F •irr on every de Rham fiber by methods in [26, 28, 7].

For a regular function f : U → A1 on a smooth complex quasi-projective variety U of dimension d, we define
the exponential mixed Hodge structures

Hr(U, f)H := Π
(
Hr−df∗QH

U

)
, Hr

c(U, f)H := Π
(
Hr−df!QH

U

)
and

Hr
mid(U, f)H := Π

(
im

(
Hr−df!QH

U → Hr−df∗QH
U

))
.

In particular, the de Rham fiber of Hr
?(U, f)H is Hr

dR,?(U, f).

3.2 The irregular Hodge filtration on twisted de Rham cohomology
Let U be a complex smooth quasi-projective variety and f a regular function on U . The irregular Hodge

filtration on the de Rham fiber of Hr(U, f)H has a geometric interpretation in [33].
Let j : U → X be a compactification, and S := X\U be the boundary divisor. The pair (X,S) is called a

good compactification of the pair (U, f) if S is normal crossing and f extends to a morphism f : X → P1
C. We

denote by P the pole divisor of f .
For the twisted de Rham complex (Ω(X)•(∗S),∇ = d + df), there is a decreasing filtration Fλ(∇) :=

F 0(λ)≥⌈λ⌉ indexed by non-negative real numbers, where F 0(λ) is the complex

O(⌊−λP ⌋) ∇−→ Ω1(logS)(⌊(1 − λ)P ⌋) → · · · → Ωp(logS)(⌊(p− λ)P ) → · · · .

Definition 3.4. The irregular Hodge filtration of the de Rham cohomology Hi
dR(U,∇) is defined by

FλHi
dR(U,∇) := im(Hi(X,Fλ(∇)) → Hi

dR(U,∇)).

The filtration is independent of the choice of good compactifications (X,S) [33, Thm. 1.7].

Newton polyhedral filtration

When U is Gn
m, a regular function f =

∑
α c(α)xα on U is a Laurent polynomial. The Newton polytope

∆ = ∆(f) is the convex hull of {0}
⋃

Supp(f) inside the character lattice M := Hom(U,C×). We say that f is
non-degenerate with respect to ∆(f) if, for each face δ of ∆(f) not containing 0, the function fδ =

∑
α∈δ c(α)xα

has no critical points in U .
We denote M ⊗Z R by MR. Let F := F (∆) be the normal fan of the Newton polytope ∆ on the dual space

NR = Hom(MR,R), i.e., each ray of the normal fan corresponds to a facet of ∆, pointing inward with respect to
the paring NR ×MR → R. We refine the fan F to F̃ such that the corresponding toric variety Xtor is smooth
proper and the toric boundary S := Xtor\U is simple normal crossing. We again denote by P the pole divisor of
f . Then each ray in F̃ (resp. F ) corresponds to an irreducible component of S (resp. P ).

In [33], the filtration Fλ
NP(∇) is defined similarly to Fλ(∇) by replacing the good compactification (X,S)

with (Xtor, S). The newton monomial filtration Fλ
NP(Hi

dR(U,∇)) is defined by

Fλ
NPHi

dR(U,∇) := im(Hi(X,Fλ
NP(∇)) → Hi

dR(U,∇)). (3.5)

By [1, Thm 1.4] and [33, Thm 4.6], when f is non-degenerate, the irregular Hodge filtration F •irr and the Newton
monomial filtration F •NP on Hi

dR(U,∇) agree.
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3.3 Motives and exponential mixed Hodge structures attached to Kloosterman
connections

Let {xi,j |1 ≤ i ≤ k, 1 ≤ j ≤ n} and z be the coordinates of Gnk+1
m , and t be the coordinate of the source of

the map [n + 1]: Gm,t → Gm,z, a 7→ an+1. The group Sk acts on Gnk+1
m,(xi,j ,z) by fixing z and σ · xi,j = xσ(i),j ,

and the group Sk × µn+1 acts on Gnk+1
m,(xi,j ,t) by

(σ × µ) · xi,j = xσ(i),j and (σ × µ) · t = µ · t.

We denote by χn the character Sk×µn+1 ↠ Sk
signn

−−−→ {±1}. Let fk : Gnk+1
m,(xi,j ,z) → A1 (resp. f̃k : Gnk+1

m,(xi,j ,t) → A1)
be the Laurent polynomial

k∑
i=1

( n∑
j=1

xi,j + z∏n
j=1 xi,j

) (
resp.

k∑
i=1

( n∑
j=1

xi,j + tn+1∏n
j=1 xi,j

))
. (3.6)

Definition 3.7. The motive Mk
n+1(Kl) attached to Kloosterman moments is defined as the exponential motive

im
(

Hnk+1
c (Gnk+1

m , fk)Sk,χn → Hnk+1(Gnk+1
m , fk)Sk,χn

)
,

in the sense of [9, §4.2, §4.9], where the exponent (Sk, χn) means taking the χn-isotypic components.

Remark 3.8. This exponential motive is isomorphic to a Nori motive

grW
nk+1Hnk−1

c (K)Sk×µn+1,χn(−1)

by an argument similar to that in [10, Thm 3.8]. Here K ⊂ Gnk
m,(yi,j) is the hypersurface defined by gk(yi,j) =∑k

i=1
(∑n

j=1 yi,j + 1∏n

j=1
yi,j

)
, and the action of Sk × µn+1 on the motive Hnk−1

c (K) is induced by functoriality

from that on K ⊂ Gnk
m,yi,j

, defined by3 (σ × µ) · yi,j := µ−1yσ(i),j , and hence is compatible with the weight
filtration.

The name of this motive is justified by [10, Thm. 3.12, Thm. 5.8, and Thm. 5.17], because its ℓ-adic realizations
encode the Kloosterman moments. Besides, the de Rham realization of Mk

n+1(Kl) is identified with the middle
de Rham cohomology of SymkKln+1 [10, Cor. 2.15]. More precisely, for ? ∈ {∅, c,mid}, we have

H1
dR,?(Gm,SymkKln+1) ≃ Hnk+1

dR,? (Gnk+1
m , fk)Sk,χn ≃ Hnk+1

dR,? (Gnk+1
m , f̃k)Sk×µn+1,χn ,

and
H1

dR,?(Gm,SymkK̃ln+1) ≃ Hnk+1
dR,? (Gnk+1

m , f̃k)Sk,χn .

In particular, the µn+1-invariants of H1
dR,?(Gm,SymkK̃ln+1) is H1

dR,?(Gm,SymkKln+1).

Definition 3.9. For ? ∈ {∅, c,mid}, we define the exponential mixed Hodge structures attached to Kloosterman
moments as

H1
?(Gm,SymkKln+1)H := (Hnk+1

? (Gnk+1
m , f̃k)H)Sk×µn+1,χn

and

H1
?(Gm,SymkK̃ln+1)H := (Hnk+1

? (Gnk+1
m , f̃k)H)Sk,χn .

The de Rham fibers (3.3) of the above exponential mixed Hodge structures are the de Rham cohomologies

H1
dR,?(Gm,SymkKln+1) and H1

dR,?(Gm,SymkK̃ln+1)

respectively. By [10, Thm. 3.2 and Thm. 3.8], these exponential mixed Hodge structures have the following
properties:

3This action is related to the action of Sk × µn+1 on Gnk+1
m,(xi,j ,t) by the relation xi,j = t · yi,j .
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• For ? ∈ {∅, c,mid}, the exponential mixed Hodge structures H1
?(Gm,SymkKln+1)H and H1

?(Gm,SymkK̃ln+1)H

are isomorphic to (classical) mixed Hodge structures, i.e., lie in the essential image of (3.2). They are
(mixed) of weights ≥ nk + 1, ≤ nk + 1, and nk + 1, respectively.

• We have isomorphisms of pure Hodge structures

H1
mid(Gm,SymkKln+1)H ≃ grW

nk+1(Hnk−1
c (K)H)Sk×µn+1,χn(−1),

and

H1
mid(Gm,SymkK̃ln+1)H ≃ grW

nk+1(Hnk−1
c (K)H)Sk,χn(−1).

• The natural forget support morphisms induce isomorphisms

grW
nk+1H1

c(Gm,SymkKln+1)H → grW
nk+1H1(Gm,SymkKln+1)H,

and

grW
nk+1H1

c(Gm,SymkK̃ln+1)H → grW
nk+1H1(Gm,SymkK̃ln+1)H.

• There are (−1)nk+1-symmetric perfect pairings

H1
mid(Gm,SymkKln+1)H × H1

mid(Gm,SymkKln+1)H → Q(−nk − 1)

and

H1
mid(Gm,SymkK̃ln+1)H × H1

mid(Gm,SymkK̃ln+1)H → Q(−nk − 1)

3.4 Motives and exponential mixed Hodge structures attached to Airy connections
Let {xi|1 ≤ i ≤ k} and z be the coordinates of Gk+1

m and t the coordinate of the source of the map
[n] : A1

t → A1
z. The group Sk acts on Gk+1

m by

σ · xi = xσ(i) and σ · z = z.

We denote by χ the character Sk
sign−−→ {±1}. Let fk : Ak+1

m,(xi,z) → A1 be the Laurent polynomial

∑
i

( 1
n+ 1x

n+1
i − zxi

)
. (3.10)

Here, we use the same notation in (3.6) for this Laurent polynomial because it plays the same role as fk in the
side of Kloosterman moments in Section 3.3.

Definition 3.11. The motive Mk
n(Ai) attached to Airy moments is defined as the exponential motive

im
(

Hk+1
c (Ak+1, fk)Sk,χ → Hk+1(Ak+1, fk)Sk,χ

)
,

where the exponent (Sk, χ) means taking the χ-isotypic component.

The de Rham realization of Mk
n(Ai) is identified with the middle de Rham cohomology of SymkAin. More

precisely, for ? ∈ {∅, c,mid}, we have

H1
dR,?(A1,SymkAin) ≃ Hnk+1

dR,? (Ak+1, fk)Sk,χ.

Definition 3.12. For ? ∈ {∅, c,mid}, we define the exponential mixed Hodge structures attached to Airy
moments

H1
?(A1,SymkAin)H := (Hk+1

? (Ak+1, fk)H)Sk,χ.
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The de Rham fibers (3.3) of the above exponential mixed Hodge structures are de Rham cohomologies

H1
dR,?(A1,SymkAin)

for ? ∈ {∅, c,mid}. By [29, Thm. 6.17], these exponential mixed Hodge structures have the following properties:

• For ? ∈ {∅, c,mid}, the exponential mixed Hodge structures H1
?(A1,SymkAin)H are (mixed) of weights

≥ k + 1, ≤ k + 1 and k + 1 respectively.

• The natural forget support morphism induces an isomorphism

grW
k+1H1

c(A1,SymkAin)H → grW
k+1H1(A1,SymkAin)H,

and H1
mid(A1,SymkAin)H is equal to its image.

• There is a (−1)k+1-symmetric perfect pairing

H1
mid(A1,SymkAin)H × H1

mid(A1,SymkAin)H → Q(−k − 1).

4 Cohomology basis
In this section, we emphasize some bases of the de Rham cohomologies and the middle de Rham cohomologies

of connections SymkKln+1 and SymkAin. The main results are Theorems 4.15, 4.16, 4.25, 4.26, and 4.30.

4.1 Counting results
We prepare some counting results here, which will be useful in selecting bases of the de Rham cohomologies

of Kloosterman and Airy connections.

4.1.1 Some generating series

Let Qk(t) be the rational function

(1 − tn+1) · · · (1 − tn+k)
(1 − t2) · · · (1 − tk)

in Lemma 2.5, and we expand Qk(t) as
∑

d≥0 qd,kt
d for qd,k ∈ Q.

Lemma 4.1. The coefficients qd,k satisfies the following properties:

1. qd,k = 0 if d > nk + 1,

2. qd,k = −qnk+1−d,k if 0 ≤ d ≤ nk + 1.

In other words, the rational function Qk(t) is a polynomial of degree at most nk + 1, and its coefficients are
antisymmetric with respect to the degree.

Proof. We first prove that the rational function Qk(t) is a polynomial. We decompose both the nominator and
the denominator of Qk(t) as products of the form∏

ℓ≥2

∏
ζℓ=1 primitive

(1 − ζ · t)Nζ and
∏
ℓ≥2

∏
ζℓ=1 primitive

(1 − ζ · t)Dζ

respectively, where

Nζℓ
= #{i | 1 ≤ i ≤ k, ℓ | n+ i} and Dζℓ

= #{i | 1 ≤ i ≤ k, ℓ | i}.

Noticing that
(

n+k
n

)
is an integer, we deduce that Nζ −Dζ ≥ 0 for any ℓ ≥ 2 and any primitive ℓ-th roots of

unity ζ. Hence, Qk(t) is a polynomial.
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Notice that

tnk+1Qk(t−1) = tnk+1 (1 − t−n−1) · · · (1 − t−n−k)
(1 − t−2) · · · (1 − t−k)

= − (1 − tn+1) · · · (1 − tn+k)
(1 − t2) · · · (1 − tk) = −Qk(t).

So ∑
d≤nk+1

qnk+1−d,kt
d = −

∑
d≥0

qd,kt
d.

By comparing the coefficients of both sides, we deduce the lemma.

Let n be a natural number. We denote by Nd,k the cardinalities of the sets

{(a, I0, I1, . . . , In) ∈ Nn+2 | |I| = k, (n+ 1)a+ I1 + 2I2 + · · · + nIn = d} (4.2)

for d, k ≥ 0, and we set nd,k = Nd,k −Nd−1,k.

Proposition 4.3. Assume that gcd(n+ 1, k) = 1. Then

1. nd,k = 0 if d > nk − n− k + 1.

2. nd,k − nnk−n−k+1−d,k = 0.

3. nd,k − nnk+1−d,k = qd,k.

Proof. Let H(t, x) be the generating series
∑

d,k≥0 Nd,k t
d · xk of Nd,k. It is the formal power series expansion of

the rational function
1

(1 − tn+1)(1 − x)(1 − t · x) · · · (1 − tn · x) .

Then, the generating series of nd,k is the formal power series expansion of the rational function

h(t, x) := (1 − t)H(t, x) = 1 − t

(1 − tn+1)(1 − x)(1 − t · x) · · · (1 − tn · x) . (4.4)

We write h(t, x) =
∑

k≥0 hk(t)xk, where each hk(t) =
∑

d≥0 nd,kt
d ∈ Q[[t]]. Notice that hk(t) can be considered

as a holomorphic function for small |t|.

Lemma 4.5. The formal power series hk(t) are polynomials in t if gcd(k, n+ 1) = 1.

Proof. Let r(t, x) := (1 − tn+1) ·H(t, x) be the rational function

1
(1 − x)(1 − t · x) · · · (1 − tn · x) . (4.6)

We can expand r(t, x) as a formal power series
n∏

i=0

(∑
j≥0

(ti · x)j
)

=
∑

d,k≥0
rd,kt

dxk =
∑
k≥0

rk(t)xk,

which converges absolutely when |t| ≤ 2 and |x| ≤ 2−n−1. Observe that rk(t) is the polynomial hk(t) ·(1+ t+ · · ·+
tn). To prove that hk(t) are polynomials when gcd(k, n+ 1) = 1, it suffices to show that 1 + t+ · · · + tn | rk(t).

Observe that r(t, x) and r(t, t · x) =
∑

d,k≥0 rd,kt
d+kxk both converge absolutely when |t| ≤ 2 and |x| ≤

2−n−2. Using the expression (4.6), we have r(ζn+1, x) = r(ζn+1, ζn+1 · x) for each (n + 1)-th root of unity
ζn+1 ̸= 1. By comparing the coefficients of xk on both sides of r(ζn+1, x) = r(ζn+1, ζn+1 · x), we conclude that
rk(ζn+1) = ζk

n+1 · rk(ζn+1). When gcd(k, n+ 1) = 1, we deduce that ζn+1 is a root of rk(t). Since this holds for
all nontrivial (n+ 1)-th roots of unity, we conclude that 1 + t+ · · · + tn | rk(t). Therefore, hk(t) is a polynomial
when gcd(k, n+ 1) = 1.
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By a direct computation, we have

h̃1(t, x) :=
∑
k≥0

tnk−nhk(t−1)xk = t−n ·
∑
k≥0

hk(t−1)(tn · x)k

= t−n · h(t−1, tn · x) = h(t, x).

Comparing the coefficients of xk in the above identity, we have tnk−nhk(t−1) = hk(t). When gcd(k, n+ 1) = 1,
since hk(t) is a polynomial, we deduce that nd,k = 0 if d ≥ nk − n− k + 1. We verified the first and the second
statements.

As for the last statement, we consider

h̃2(t, x) : =
∑
k≥0

tnk+1hk(t−1)xk = t ·
∑
k≥0

hk(t−1)(tn · x)k = t · h(t−1, tn · x). (4.7)

By a direct calculation, the difference h(t, x) − h̃2(t, x) is the formal power series expansion of
1 − t

(1 − x)(1 − t · x) · · · (1 − tn · x) .

Lemma 4.8 ([13, §3]). Let Qk(t) be as above, then
1 − t

(1 − x)(1 − t · x) · · · (1 − tn · x) =
∑
k≥0

Qk(t)xk.

By the lemma, we get ∑
d≥0

(nd,k − nnk+1−d,k)td =
∑
d≥0

qd,kt
d

if we look at the coefficients of xk in (4.7). Then, we deduce the last statement of the proposition by comparing
the coefficients of td above.

Example 4.9. Assume that n = 2 and k is any positive integer. The numbers qd,k and nd,k can be made
explicit when d ≤ k. Under the assumption gcd(k, 3) = 1, we get the rest qd,k and nd,k when d ≥ k + 1 by the
symmetric property.

The numbers qd,k when d ≤ k are
{

1 2 | d
0 2 ∤ d

because we have

Qk(t) ≡ 1
1 − t2

(mod tk+1)

by Lemma 2.5.
As for nd,k, by the definition of Nd,k, the number Nd,k −Nd−3,k is equal to the cardinality of the set

{(0, I0, I1, I2) ∈ N4 | I0 + I1 + I2 = k, I1 + 2I2 = d},

which is #{i0 | max{0, k − d} ≤ i0 ≤ k − ⌈ d
2 ⌉}. It follows that

Nd,k −Nd−3,k =


⌊ d

2 ⌋ + 1 d ≤ k,

k − ⌈ d
2 ⌉ + 1 k + 1 ≤ d ≤ 2k,

0 2k + 1 ≤ d.

(4.10)

If d ≥ 6, to compute nd,k = Nd,k −Nd−1,k, we can write nd,k − nd−6,k as

(Nd,k −Nd−3,k +Nd−3,k −Nd−6,k) − (Nd−1,k −Nd−4,k +Nd−4,k −Nd−7,k).

Using (4.10), we deduce that

nd,k − nd−6,k =


1 d ≤ k,

0 k + 1 ≤ d ≤ k + 3,
−1 k + 4 ≤ d ≤ 2k + 2 or d = 2k + 4,
0 d = 2k + 3 or 2k + 5 ≤ d.

If d ≤ min(5, k), we check directly that nd,k = #Wd,k =
{

1 d ̸= 1
0 d = 1

. It follows that nd,k =
{

⌊ d
6 ⌋ + 1 6 ∤ d− 1

⌊ d
6 ⌋ 6 | d− 1

if d ≤ k.
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4.1.2 Some results in linear algebra

Let Vk = SymkV be the k-th symmetric power of the standard representation V = Cn+1 of SLn+1, N and
E the matrices from (2.4), and Nk = SymkN and Ek = SymkE the induced endomorphisms on Vk. Let t and
z be two variables such that z = tn+1. We denote by G+ the vector space Vk[z] := Vk ⊗C C[z], on which the
endomorphism Nk + zEk acts. Similarly, we denote by G̃+ = G+ ⊗C[z] C[t], on which Nk + tn+1Ek acts.

We choose the standard basis {v0, v1 . . . , vn} of V . Then {vI | |I| = k} is a basis for Vk. Let deg be the
grading on G+ defined by

deg(zavI) := (n+ 1)a+
n∑

i=0
i · Ii. (4.11)

Then Nk + zEk is homogeneous of degree 1. Similarly, there is a grading on G̃+ defined by

deg(tavI) := a+
n∑

i=0
i · Ii. (4.12)

Let ζ be a primitive (n + 1)-th root of unity. The elements fi =
∑n

j=0 ζ
i(n−j)tn−jvj are eigenvectors of

Nk + tn+1Ek of the eigenvalues t · ζi for 0 ≤ i ≤ n. Moreover, the set {f I :=
∏n

j=0 f
Ij

j | I ∈ Nn+1, |I| = k} is as
a basis for G̃+ as a C[t]-module. In particular, we have

(Nk + tn+1Ek)f I = t · CIf
I ,

where CI is the sum
∑n

j=0 ζ
j · Ij .

Lemma 4.13. The kernel of Nk + tn+1Ek is a free C[t]-module generated by the set {f I | CI = 0}. In particular,
the maps Nk + zEk and Nk + tn+1Ek are injective if gcd(k, n+ 1) = 1.

Proof. Let
∑

i gI(t)f I be an element in ker(Nk + tn+1Ek), then

0 = (Nk + tn+1Ek)
(∑

I

gI(t)f I

)
=

∑
I

t · CI · gI(t)f I .

Since f I are linearly independent, we conclude that the coefficients gI are 0 as long as CI ̸= 0. So ker(Nk +
tn+1Ek) = ⊕I s.t. CI=0f

I C[t] ⊂ G̃+.
By the commutative diagram

G+ G+

G̃+ G̃+

Nk+zEk

Nk+tn+1Ek

we observe that ker(Nk + zEk) = ker(Nk + tn+1Ek) ∩G+. If gcd(k, n+ 1) = 1, there is no I such that CI = 0.
Hence, Nk + tn+1Ek and Nk + zEk are both injective.

Now, we determine the cokernel of Nk + zEk.

Proposition 4.14. If gcd(k, n+ 1) = 1, there exist finite subsets Wd,k ⊂ G+ for 0 ≤ d ≤ nk + 1 such that

1. each element in Wd,k has degree d,

2. the generating series
∑

d,k≥0 #Wd,kt
dxk is the formal power series expansion of the rational function h(t, x)

in (4.4),

3. coker (Nk + zEk) = span(Wd,k | 0 ≤ d ≤ nk + 1),

4. #Wd,k − #Wnk+1−d,k = qd,k for all 0 ≤ d ≤ nk + 1,

5. #Wd,k − #Wnk−n−k+1−d,k = 0 for all 0 ≤ d ≤ nk − n− k + 1.
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Proof. We can decompose G+ = grG+ as ⊕d≥0Gd,k where Gd,k is generated by elements of degree d, i.e., linear
combinations of zavI such that (n + 1)a +

∑n
i=0 i · Ii = d. Since Nk + zEk is homogeneous of degree 1 with

respect to the degree (4.11), the kernel and cokernel of Nk + zEk can be decomposed as

ker(Nk + zEk) = ⊕d ker(Nk + zEk) ∩Gd,k

and

coker (Nk + zEk) = ⊕dGd,k/(Nk + zEk)(Gd−1,k)

respectively.
By Lemma 4.13, the kernel ker(Nk + zEk) is 0. We take Wd,k ⊂ Gd,k such that the image of Wd,k in

Gd,k/(Nk + zEk)(Gd−1,k) form a basis for Gd,k/(Nk + zEk)(Gd−1,k). This choice of Wd,k satisfies the first
statement.

By construction, we have #Wd,k = dimGd,k − dimGd−1,k and

dimGd,k = #
{

(a, I) | |I| = k, (n+ 1)a+
n∑

i=0
i · Ii = d

}
.

Since dimGd,k is the number Nd,k in (4.2) and #Wd,k = nd,k, we deduce the second statement.
At last, by our construction of Wd,k, they form a basis for coker (Nk + zEk). By Proposition 4.3, the sets

Wd,k are empty when d > nk − n− k + 1, and we conclude the last three statements of the proposition.

4.2 The case of SymkKln+1 when gcd(k, n + 1) = 1
Recall that Kln+1 is the connection (

On+1
Gm

,d +N
dz
z

+ E dz
)

defined in (2.4). We can choose a basis {v0, . . . , vn} of Kln+1 (as a C[z, z−1]⟨∂z⟩-module) such that

z∂z(vi) = vi+1 for i = 0, . . . , n− 1 and z∂z(vn) = zv0,

i.e., vi generate C[z, z−1]⟨∂z⟩/((z∂z)n+1 − z). The set {vi} also serve as a basis for the connection

K̃ln+1 =
(

On+1
Gm

,d + (n+ 1)N dt
t

+ (n+ 1)tnEdt
)
,

and satisfies similar conditions

t∂t(vi) = (n+ 1)vi+1 for i = 0, . . . , n− 1 and t∂t(vn) = (n+ 1)tn+1v0.

In this way, the elements {vI := vI0
0 · · · vIn

n | |I| = I0 + · · · + In = k} form a basis for SymkKln+1 (resp.
SymkK̃ln+1) as a C[z, z−1]⟨∂z⟩-module (resp. C[t, t−1]⟨∂t⟩-module).

Let deg be the degree on the symmetric power SymkKln+1 (resp. SymkK̃ln+1), defined by the same formula
as in (4.11) and (4.12). We have the following theorems:

Theorem 4.15. If gcd(k, n+ 1) = 1, there exist finite subsets Wd,k ⊂ SymkKln+1 for 0 ≤ d ≤ nk + 1 such that

1. each element in Wd,k has degree d,

2. the generating series
∑

d,k≥0 #Wd,kt
dxk is the formal power series expansion of the rational function h(t, x)

in (4.4),

3. the de Rham cohomology H1
dR(Gm,SymkKln+1) is spanned by the set

⋃
d Wd,k,

4. #Wd,k − #Wnk+1−d,k = qd,k for all 0 ≤ d ≤ nk + 1, where qd,k is the coefficient of td in the formal power
series expansion of the rational function Qk(t) in Lemma 2.5.

Moreover, we can choose a basis for the middle de Rham cohomologies.
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Theorem 4.16. If gcd(k, n+ 1) = 1, there exist finite subsets Wmid
d,k ⊂ SymkKln+1 for 0 ≤ d ≤ nk+ 1 such that

1. each element in Wmid
d,k has degree d,

2. the generating series
∑

d,k≥0 #Wmid
d,k t

dxk is

h(t, x) −
∑
k≥0

Qk(t)xk,

where Qk(t) =
∑⌊nk

2 ⌋
d=0 qd,kt

d
(
≡ Qk(t) mod t⌊

nk
2 ⌋+1)

,

3. the middle de Rham cohomology H1
dR,mid(Gm,SymkKln+1) is spanned by

⋃
d W

mid
d,k ,

4. #Wmid
d,k = #Wmid

nk+1−d,k for all 0 ≤ d ≤ nk + 1.

4.2.1 Bases of de Rham cohomologies

We take the notation Vk, Nk and Ek from Section 4.1.2. Let G = Gk be Vk[z, z−1] := Vk ⊗C C[z, z−1], on
which θz := z∂z acts by

θz(zℓvI) = ℓzℓvI + zℓ(Nk + zEk)vI . (4.17)

Similarly, the endomorphism θt := t∂t acts on G̃ = G⊗C[z] C[t] (z = tn+1) by

θt(tℓvI) = ℓtℓvI + tℓ(n+ 1)(Nk + tn+1Ek)vI .

The first de Rham cohomologies H1
dR(Gm,SymkKln+1) and H1

dR(Gm,SymkK̃ln+1) are identified with the cokernels
of the two-term complexes

G
θz−→ G and G̃

θt−→ G̃ (4.18)

respectively.

Lemma 4.19. Let G+ := Vk ⊗C C[z] and G̃+ = G+ ⊗C[z] C[t]. Then, the two-term complexes

G+ θz−→ G+ and G̃+ θt−→ G̃+

are quasi-isomorphic to the complexes in (4.18) respectively.

Proof. The proof of the lemma is essentially that of [10, Lem. 4.15]. We only give the proof for G+, and the
proof for G̃+ is similar. Observe that G =

⋃
r≥0 z

−rG+. It suffices to show that θz is invertible on the quotient
z−r−1G+/z−rG+ for r > 0.

In fact, the induced endomorphism θz on the quotient z−r−1G+/z−rG+ is now z∂z + Nk. Using the
decomposition with respect to Nk in Lemma 2.5, we have

z−r−1G+/z−rG+ =
⌊ kn

2 ⌋∑
m=0

z−r−1(Symnk−2d(C2))⊕qd,k .

Here θz acts on z−r−1Symnk−2d(C2) by an invertible matrix Jnk−2d+1(−r − 1), where Jnk−2d+1(−r − 1) is the
lower Jordan block with diagonal −r − 1 of size nk − 2d+ 1.

The operators θz and θt are (inhomogeneous) of degree 1 with respect to the degrees (4.11) and (4.12)
respectively. We denote by θz = (Nk + zEk) (resp. θt = (n+ 1)(Nk + tn+1Ek)) the induced map on the graded
quotient grG+ (resp. gr G̃+). We also identify grG+ (resp. gr G̃+) with G+ (resp. G̃+).

Proof of Theorem 4.15. Let F deg
p G+ be the (increasing) filtration on G+ defined by deg in (4.11). We filter

the two-term complex in Lemma 4.19 by F̃ pG+[i] := F deg
−p+iG

+[i] for i = 0, 1. Consider the spectral sequence
associated with F̃ •

Ep,q
1 = Hp+q

(
grF deg

−p G+ θz−→ grF deg

−p+1G
+)

=⇒ Hp+q(G+, θz) (p ≤ 0, p+ q ∈ {0, 1}),
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which degenerates at the E2-page. Since gcd(k, n+ 1) = 1, by Proposition 4.14.3, we have the identification

coker θz =
⊕

d

⊕
w∈Wd,k

Cw.

Since θz is injective by Lemma 4.13, the spectral sequence already degenerates at the E1-page. So there exists
a decreasing filtration F̃ • on coker θz such that the graded pieces of coker θz are ⊕w∈Wd,k

Cw. So we can take
the union of these finite sets Wd,k as a basis for coker (θz). We deduce all statements in the proposition by
Proposition 4.14.

4.2.2 Bases of the middle de Rham cohomologies

Now we determine bases for the middle de Rham cohomologies of SymkKln+1. Let Ĝ0, Ĝ∞, ̂̃
G0 and ̂̃

G∞
be G((z)), G((z−1)), G̃((t)) and G̃((t−1)) respectively. The key to determining the cohomology classes is the
following proposition:

Proposition 4.20 ([11, Cor. 3.5] ). We can identify the cohomology with compact support H1
dR,c(Gm,SymkKln+1)

with the quotient of the C-vector space

{(m0,m∞, ω) ∈ Ĝ0 × Ĝ∞ ×G | θz(m0,m∞) = (ω|0, ω|∞)}

by the C-vector space {(h|0, h|∞, θ(h)) | h ∈ G}.

Lemma 4.21. The cokernel of θz : Ĝ0 → Ĝ0 (resp. θt : ̂̃
G0 → ̂̃

G0) is cokerNk. In particular, we have
z ·G+ ⊂ θz(Ĝ0) and t · G̃+ ⊂ θt( ̂̃

G0).

Proof. We give the proof for the case of θz, and the proof for the case of θt is similar. Using a similar argument
as that of Lemma 4.19, the complex Ĝ0

θz−→ Ĝ0 is quasi-isomorphic to Ĝ+
0

θz−→ Ĝ+
0 , where Ĝ+

0 := G+[[z]].
We define a decreasing filtration F • on

Ĝ+
0

θz−→ Ĝ+
0 , (4.22)

by Fm(Ĝ+
0 ) = ⊕∞j=mz

j · Vk if m ≥ 0 and Fm = F 0 if m < 0. The complex is complete with respect to the
filtration F •, and the induced spectral sequence {Ep,q

r } is complete, exhaustive, and regular. By the complete
convergence theorem [32, Thm. 5.5.10], the associated spectral sequence {Ep,q

r } converges to the cohomologies
Hp+q(Ĝ+

0
θz−→ Ĝ+

0 ) of (4.22), concentrated in degree 0 and 1. Here, the terms in the E0-page are given by

Ep,q
0 :=

{
grp

F (Ĝ+
0 ) ≃ zp · Vk, p ≥ 0 and p+ q ∈ {0, 1}

0, else

and the morphisms dp,−p
0 : zp · Vk → zp · Vk are induced by θz (in fact they coincide with p · id +Nk in the sense

that dp,−p
0 (zpv) = pzpv + zpN1

kv). The morphism dp,−p
0 = p · id +Nk is an isomorphism if p ̸= 0. So all terms in

the E1-page are 0 except E0,0
1 = kerNk and E0,1

1 = cokerNk. Therefore, the cokernel of (4.22) is cokerNk.

Lemma 4.23. If gcd(k, n+ 1) = 1, the cokernels of θz : Ĝ∞ → Ĝ∞ and θt : ̂̃
G∞ → ̂̃

G∞ are 0.

Proof. We give the proof for θz, and the proof for θt is similar. Recall that in Ĝ∞, the subspace of elements of
degree 0 with respect to z is Vk. Similar to the proof of Theorem 4.15, we consider the filtration on Ĝ∞ induced
by the degree (4.11), i.e., F̃ pĜ+

∞[i] := F deg
−p+iĜ

+
∞[i] for i = 0, 1. The induced spectral sequence

Ep,q
1 = Hp+q

(
grF deg

−p Ĝ∞
θz−→ grF deg

−p+1Ĝ∞
)

=⇒ Hp+q(Ĝ∞, θz) (p+ q ∈ {0, 1})

degenerates at the E2-page. The terms in the E0-page are given by

Ep,q
0 :=

{
grF deg

−p+(p+q)(Ĝ∞) = grF deg

q (Ĝ∞), p+ q ∈ {0, 1}
0, else

and the morphisms dp,−p
0 are induced by θz (in fact they coincide with Nk + zEk in the sense that dp,−p

0 v =
(Nk + zEk)v). Since the morphism dp,−p

0 = Nk + zEk is invertible, all terms in the E1-page are 0. Therefore,
the cokernel of θz : Ĝ∞ → Ĝ∞ is 0.
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Proof of Theorem 4.16. There are commutative diagrams

G+ G+ coker θz

Ĝ0 Ĝ0 cokerNk

θz

θz

and
G+ G+ coker θz

Ĝ∞ Ĝ∞ 0

θz

θz

by Lemma 4.21 and Lemma 4.23. Since Nk is also homogeneous of degree 1, there exist finite sets Σd,k ⊂ Gd,k

such that the image of
⋃

d Σd,k in coker θz form a basis for cokerNk. We may assume that Σd,k ⊂ Wd,k.
For w =

∑m
i=0 z

iwi ∈ Gd,k, we can decompose w as w′+w′′, where w′ is the constant term w0 with respect to z,
and w′′ =

∑m
i=1 z

iwi. Up to replacing w by w+θz(h) for some h ∈ Gd−1,k ∩Vk, we can assume that w′ ∈ cokerNk

(If we write w′ = −Nkh+ g for h ∈ Gd−1,k ∩ Vk and g ∈ Gd,k ∩ cokerNk, then w + θz(h) = g + (w′′ + z · Ekh)).
By Lemma 4.21 and Lemma 4.23, we know that w′′ is in the image of both θz : Ĝ0 → Ĝ0 and θz : Ĝ∞ → Ĝ∞.

Let W ′d,k be the set of w′′ ∈ Gd,k ∩ zG+ such that there exists w′ ∈ Gd,k ∩ cokerNk satisfying w′+w′′ ∈ Wd,k.
We take Wmid

d,k ⊂ Gd,k as a maximally linearly independent subset of W ′d,k. Then

• each element in Wmid
d,k has degree d,

• span(Wd,k) = span(Wmid
d,k ) ⊕ span(Σd,k),

• elements in Wmid
d,k are in the image of both θz : Ĝ0 → Ĝ0 and θz : Ĝ∞ → Ĝ∞.

By the construction of Wmid
d,k , the first statement in Theorem 4.16 is verified. Notice that

#Wmid
d,k =

{
nd,k − qd,k 0 ≤ d ≤ nk

2
nd,k

nk+1
2 ≤ d ≤ nk + 1

and #Σd,k = qd,k, we deduce the second and the forth statements by Proposition 4.3.
At last, by the key Proposition 4.20, we have

span
(⋃

Wmid
d,k

)
⊂ H1

dR,mid(Gm,SymkKln+1).

We use the computation of dimensions from Lemma 2.19 to conclude that the above inclusion is an identity. In
other words, the third statement in Theorem 4.16 holds.

Remark 4.24. We obtain from the above proof an isomorphism of vector spaces

H1
dR(Gm,SymkKln+1)/H1

dR,mid(Gm,SymkKln+1) ≃ cokerNk

when gcd(k, n+ 1) = 1.

4.3 The case of SymkKl3 when 3 | k

We take the same notation from Section 4.2 and let n = 2. Recall that

H1
dR(Gm,SymkKl3) = H1

dR(Gm,SymkK̃l3)µ3 .

So we can choose the basis for H1
dR(Gm,SymkKl3) as a subset of that of H1

dR(Gm,SymkK̃l3).

Theorem 4.25. For 0 ≤ d ≤ 2k + 1, there exist finite subsets Wd,k ⊂ SymkKl3 and W̃d,k ⊂ SymkK̃l3 such that

1. Wd,k ⊂ W̃d,k,
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2. each element in Wd,k (resp. W̃d,k) has degree d,

3. the de Rham cohomology H1
dR(Gm,SymkKl3) (resp. H1

dR(Gm,SymkK̃l3)) is spanned by the set
⋃

d Wd,k

(resp.
⋃

d W̃d,k),

4. if d ≤ k, the cardinality of Wd,k (resp. W̃d,k) is

nd,k =
{

⌊ d
6 ⌋ + 1 6 ∤ d− 1

⌊ d
6 ⌋ 6 | d− 1

(resp, ñd,k = ⌊ d
2 ⌋ + 1).

As in the case of SymkKln+1 when gcd(k, n+1) = 1, we choose the bases of the middle de Rham cohomologies.

Theorem 4.26. For 0 ≤ d ≤ 2k + 1, there exist finite subsets Wmid
d,k ⊂ SymkKl3 and W̃mid

d,k ⊂ SymkK̃l3 such
that

1. Wmid
d,k ⊂ W̃mid

d,k ,

2. the middle de Rham cohomologies H1
dR,mid(Gm,SymkKl3) and H1

dR,mid(Gm,SymkK̃l3) are spanned by the
set

⋃
d W

mid
d,k (resp.

⋃
d W̃

mid
d,k ),

3. if d ≤ k, the cardinality of Wmid
d,k (resp. W̃mid

d,k ) is

nmid
d,k = −δd,k +

{
⌊ d

6 ⌋ d ≡ 0, 1, 2, 4 mod 6,
⌊ d

6 ⌋ + 1 p ≡ 3, 5 mod 6,

(resp, ñmid
d = ⌊ d+1

2 ⌋ − δd,k), where δa,b be the Kronecker delta symbol.

4.3.1 Bases of de Rham cohmologies

We take the notation from Sections 4.1.2 and 4.2.1. Let n = 2 and assume that 3 | k.

Proof of Theorem 4.25. As in Proposition 4.14, we can write G+ = grG+ = ⊕d≥0Gd,k and G̃+ = gr G̃+ =
⊕d≥0G̃d,k, where Gd,k and G̃d,k are generated by elements of degree d in G+ and G̃+ respectively. Since θz

(resp. θt) is homogeneous of degree 1 with respect to the degrees in (4.11) (resp. (4.12)), the kernel and cokernel
of θz (resp. θt) can be decomposed as

ker θz =
⊕

d

ker θz ∩Gd,k (resp. ker θt =
⊕

d

ker θt ∩ G̃d,k)

and

coker θz =
⊕

d

Gd,k/ θz(Gd−1,k) (resp. coker θt =
⊕

d

G̃d,k/ θt(G̃d−1,k))

respectively. By the construction of Gd,k and G̃d,k, we have

dimGd,k = #
{

(a, I)
∣∣∣ |I| = k, (n+ 1)a+

n∑
i=0

i · Ii = d
}

and

dim G̃d,k = #
{

(a, I)
∣∣∣ |I| = k, a+

n∑
i=0

i · Ii = d
}
.

In this case, the kernels of θz and θt are of rank 1 generated by ηk/3 by Lemma 4.13, where η = f (1,1,1) =
z2v3

0 + zv3
1 + v3

2 − 3zv0v1v2 has degree 6. We take Wd,k ⊂ Gd,k and W̃d,k ⊂ G̃d,k such that

• the elements in the sets Wd,k and W̃d,k have degree d,
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• Wd,k is contained in W̃d,k and elements in Wd,k are exactly µ3-invariant elements in W̃d,k,

• the image of Wd,k in Gd,k/(θz(Gd−1,k) +Gd,k ∩ C[z]ηk/3) is a basis,

• the image of W̃d,k in G̃d,k/(θt(G̃d−1,k) + G̃d,k ∩ C[t]ηk/3) is a basis.

Similar to the proof of Theorem 4.15, we consider the following spectral sequence

Ep,q
1 = Hp+q

(
grF deg

−p G̃+ θt−→ grF deg

−p+1G̃
+)

=⇒ Hp+q(G̃+, θt) (p ≤ 0, p+ q ∈ {0, 1})

which degenerates at the E2-page. There is a similar one for G+.
The kernels of θz and θt are C[z]ηk/3 and C[t]ηk/3 respectively, and we have the identification

coker θz = ⊕d ⊕w∈Wd,k
Cw ⊕ C[z]ηk/3 and coker θt = ⊕d ⊕

w∈W̃d,k
Cw ⊕ C[t]ηk/3.

Lemma 4.27. The morphism θt induces an injective morphism

θt : ker θt → coker θt.

Moreover, we have θt(trηk/3) ≡ µtrηk/3 in coker θt for some µ ̸= 0. We have similar results for θz.

Proof. Write k = 3ℓ. For r ≥ 0, we have

θt(trηℓ) = rtrηℓ + 3ℓtr(2t6v3
0 + t3v3

1 − 3t3v0v1v2)ηℓ−1.

Since

2t6v3
0 + t3v3

1 − 3t3v0v1v2 − η = t6v3
0 − v3

2 = 1
3θt(t3v2

0v2 − v1v
2
2),

it follows that

(2t6v3
0 + t3v3

1 − 3t3v0v1v2)ηℓ−1 = ηℓ + 1
3θt(t3v2

0v2 − v1v
2
2)ηℓ−1

(∗)= ηℓ + 1
3θt((t3v2

0v2 − v1v
2
2)ηℓ−1).

Here (*) is because θt(g · ηℓ−1) = θt(g)ηℓ−1 + (ℓ− 1)g · θt(η)ηℓ−2 = θt(g)ηℓ−1 for any g ∈ G̃. Hence, we deduce
that

θt(trηℓ) = (r + 3ℓ) trηℓ + θt(ℓtr(t3v2
0v2 − v1v

2
2)ηℓ−1).

Since r, ℓ ≥ 0, we conclude that θt is injective.

The spectral sequence degenerates at the E2-page because all morphisms dp,q
2 are already 0 by Lemma 4.27.

So the two vector spaces ker θt and coker θt are, respectively, the kernel and the cokernel of the induced map
θt : ker θt → coker θt. Therefore, ker θt = 0 and the composition of morphisms

W := ⊕d ⊕
w∈W̃d,k

Cw ↪→ ⊕d ⊕
w∈W̃d,k

Cw ⊕ C[t]ηk/3 = coker θt ↠ coker θt

is an isomorphism of vector spaces. Hence, the set
⋃

d W̃d,k is a basis for H1
dR(Gm,SymkK̃l3). Similarly, the set⋃

d Wd,k is a basis for H1
dR(Gm,SymkKl3).

At last, the cardinality of Wd,k is

dimGd,k − dimGd−1,k = nd,k =
{

⌊ d
6 ⌋ + 1 6 ∤ d− 1

⌊ d
6 ⌋ 6 | d− 1

if d ≤ k by Example 4.9. The cardinality of W̃d,k is by definition the cardinality of the set

{(0, I0, I1, I2) ∈ N4 | I0 + I1 + I2 = k, I1 + 2I2 = d},

which is in fact #{i0 | max{0, k − d} ≤ i0 ≤ k − ⌈ d
2 ⌉}. It follows that #W̃d,k = ⌊ d

2 ⌋ + 1 if d ≤ k.
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4.3.2 Bases of the middle de Rham cohomologies

We determine bases for the middle de Rham cohomologies when 3 | k.

Lemma 4.28. The cokernel of θz : Ĝ∞ → Ĝ∞ (resp. θt : ̂̃
G∞ → ̂̃

G∞) is generated by zk/3vk
0 (resp. tkvk

0 ).

Proof. We show the case of θt and omit the case of θz. Similar to Lemma 4.23, we consider the filtration on ̂̃
G∞

induced by the degree (4.12). The induced spectral sequence

Ep,q
1 = Hp+q

(
grF deg

−p
̂̃
G∞

θt−→ grF deg

−p+1
̂̃
G∞

)
=⇒ Hp+q( ̂̃

G∞, θt) (p+ q ∈ {0, 1})

degenerates at the E2-page. The terms in the E0-page are given by

Ep,q
0 :=

{
grF deg

q ( ̂̃
G

+

∞), p+ q ∈ {0, 1}
0, else

and the morphisms dp,−p
0 are induced by θt (in fact they coincide with 3(Nk + t3Ek) in the sense that dp,−p

0 v =
3(Nk + t3Ek)v).

Let k = 3ℓ. Recall that we showed that the kernel of Nk + t3Ek is generated by ηℓ in Lemma 4.13. The
non-zero terms in the E1-page are E−a−6ℓ,a+6ℓ

1 = E−a−6ℓ+1,a+6ℓ
1 = Ctaηℓ for each a ∈ Z.

Now let us make d−a−6ℓ,a+6ℓ
1 explicit. For any a ∈ Z, we have

θt

(
taηℓ

)
= ataηℓ + 3ℓtaηℓ−1(2t6v3

0 + t3v3
1 − 3t3v0v1v2)

= ataηℓ + 3ℓtaηℓ−1
(
η +

∑
|J|=3,CJ ̸=0

λJf
J

)
= (a+ 3ℓ)taηℓ + ta

∑
|I|=k,CI ̸=0

µIf
I

for some complex numbers λJ and µI . It follows that d−a−6ℓ,a+6ℓ
1 (taηℓ) = (a+ 3ℓ)taηℓ. Hence, every term in the

E2-page is 0, except for E−3ℓ,3ℓ
2 = E−3ℓ+1,3ℓ

1 = Ct−3ℓηℓ.
Notice that

(3t2v0)k = (f0 + ζ−1f1 + ζf2)k = δηℓ +
∑

I ̸=(ℓ,ℓ,ℓ)

δIf
I

for some non-zero δ ∈ C and δI ∈ C. It follows that tkvk
0 is cohomologous to δt−3ℓηℓ. Therefore, the cokernel of

θt : ̂̃
G∞ → ̂̃

G∞ is Ctkvk
0 .

Proof of Theorem 4.26. As in the proof of Theorem 4.16, we conclude that there exist finite sets Σd,k ⊂ Gd,k

such that the image of
⋃

d Σd,k in coker θt form a basis for cokerNk.
For w =

∑d
i=0 t

iwi ∈ G̃d,k, we can decompose w as w′ + w′′, where w′ = w0 + γtkvk
0 for some γ ∈ C, and

w′′ =
∑d

i=1 t
iwi − γtkvk

0 . Up to replacing w by w + θz(h) for some h ∈ G+, we may assume that w0 ∈ cokerNk.
By Lemma 4.21 and Lemma 4.28, we can choose γ such that w′′ is in the image of both θt : ̂̃

G0 → ̂̃
G0 and

θt : ̂̃
G∞ → ̂̃

G∞.
As a consequence, one can choose finite sets W̃mid

d,k ⊂ G̃d,k such that

• span(W̃d,k) = span(W̃mid
d,k ) ⊕ span(Σd,k) ⊕ C[t]tkvk

0 ,

• elements in W̃mid
d,k are in the image of both θt : ̂̃

G0 → ̂̃
G0 and θt : ̂̃

G∞ → ̂̃
G∞.

We can choose the sets Wmid
d,k similarly. Since cokerN and tkvk

0 = zk/3vk
0 (if 3 | k) are contained in G+, we

can moreover choose W̃mid
d,k containing Wmid

d,k . This verifies the first statement of Theorem 4.26.
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By Proposition 4.20, we have span(
⋃

d W̃
mid
d,k ) ⊂ H1

dR,mid(Gm,SymkK̃l3). Then we use the calculation of
dimensions from Lemma 2.19 to deduce that

dim H1
dR,mid(Gm,SymkK̃l3)

= dim H1
dR(Gm,SymkK̃l3) −

⌊k + 2
2

⌋
− 1

= dim H1
dR(Gm,SymkK̃l3) − (dim span(W̃d,k) − dim span(W̃mid

d,k ))

≤ dim H1
dR,mid(Gm,SymkK̃l3).

Hence, the set
⋃

d W̃
mid
d,k is a basis for H1

dR,mid(Gm,SymkK̃l3). Notice that

H1
dR,mid(Gm,SymkKl3) = H1

dR,mid(Gm,SymkK̃l3)µ3 .

We also deduce that span(
⋃

d W
mid
d,k ) = H1

dR,mid(Gm,SymkKl3). This verifies the second statement.
At last, we give the formula for the numbers nmid

d,k and ñmid
d,k in the last statements. The degree d part of

cokerN has dimension 1 for d = 0, 2, 4, . . . , 2⌊ k
2 ⌋, and 0 otherwise. The degree d part of Ctkvk

0 has dimension
1 if d = k and 0 otherwise. By Theorem 4.25, the cardinalities #W̃mid

d,k are thus the numbers stated in the
theorem.

Remark 4.29. From the above, we obtain an isomorphism of vector spaces

H1
dR(Gm,SymkKl3)/H1

dR,mid(Gm,SymkKl3)

≃H1
dR(Gm,SymkK̃l3)/H1

dR,mid(Gm,SymkK̃l3) ≃ cokerNk ⊕ Czk/3vk
0

when 3 | k.

4.4 The case of SymkAin when gcd(k, n) = 1
As in Section 4.2.1, we select bases of the de Rham cohomologies of SymkAin when gcd(k, n) = 1. Recall

that Ain is the connection (
On

A1
z
,d +Ndz + zE dz

)
defined in (2.23). We can choose a basis {v0, . . . , vn−1} of Ain (as a C[z]⟨∂z⟩-module) such that

z∂z(vi) = vi+1 for i = 0, . . . , n− 2 and z∂z(vn−1) = zv0,

i.e., vi generate C[z]⟨∂z⟩/((z∂z)n − z). In this way, the elements

{vI := vI0
0 · · · vIn−1

n−1 ||I| = I0 + · · · + In−1 = k}

form a basis for SymkAin as a C[z]⟨∂z⟩-module.
Let deg be the grading on the symmetric power SymkAin, defined by the same formula as in (4.11). We have

the following theorem:

Theorem 4.30. If gcd(k, n) = 1, there exist finite subsets Wd,k ⊂ SymkAin for 0 ≤ d ≤ nk−n−k+ 1 such that

(1). the de Rham cohomology H1
dR(A1,SymkAin) is spanned by the set

⋃
d Wd,k,

(2). each element in Wd,k has degree d,

(3). the generating series
∑

d,k≥0 #Wd,kt
dxk is the formal power series expansion of the rational function h(t, x)

in (4.4),

(4). #Wd,k = #Wnk−n−k+1−d,k for all 0 ≤ d ≤ nk − n− k + 1.
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Proof of Theorem 4.30. We use the notation Vk = SymkV , Nk and Ek from Section 4.1.2. Let G+ = G+
k be

Vk[z] := Vk ⊗C C[z], on which θz := ∂z acts by

θz(zℓvI) = ℓzℓ−1vI + zℓ(Nk + zEk)vI .

The first de Rham cohomologies H1
dR(A1,SymkAin) are identified with the cokernels of the two-term complexes

G+ θz−→ G+. (4.31)

Then θz is (inhomogeneous) of degree 1. We denote by θz = (Nk + zEk) the induced map on the graded quotient
grG+, and we identify grG+ with G+.

Consider the following spectral sequence

Ep,q
1 = Hp+q

(
grF deg

−p G+ θz−→ grF deg

−p+1G
+)

=⇒ Hp+q(G+, θz) (p ≤ 0, p+ q ∈ {0, 1})

associated with the (increasing) filtration by deg on G+. It degenerates at the E2-page.
Since gcd(k, n) = 1, by Proposition 4.14.3, we have the identification

coker θz = ⊕d ⊕w∈Wd,k
Cw.

By Lemma 4.13, the map θz is injective. So, the spectral sequence already degenerates at the E1-page. So
there exists a decreasing filtration F̃ • on coker θz such that the graded pieces of coker θz are ⊕w∈Wd,k

Cw. Hence,
we can take the union of these finite sets Wd,k as a basis for coker (θz). Therefore, all statements follow from
Proposition 4.3.

4.5 The case of KlV2,1
SL3

Let V be the standard representation of SL3, and V2,1 be the representation of the highest weight 2L1 + (L1 +
L2), which has dimension 15. We denote by P and Q the two subgroups of S4 generated by {(12), (123)} and
{(14)} respectively, and by χ the character χ : P ×Q

pr2−−→ Q
sign−−→ {±1}. By the Weyl construction [15, §15.3],

the representation V2,1 is (V ⊗4)(P×Q,χ), where the component (P ×Q,χ) means taking the isotypic component
with respect to the idempotent 1

|P |·|Q|
∑

g∈P,h∈Q χ(g, h)g · h in Z[S4].
Let N(V2,1) and E(V2,1) be the corresponding nilpotent endomorphisms on V2,1 induced from N and E in

(2.4). The associated Kloosterman connection KlV2,1
SL3

is(
O15

Gm
, d−N(V2,1)dz

z
− E(V2,1)dz

)
.

As in the results from Sections 2.2.1 and 2.2.2, we can show that:

• the formal structure of KlV2,1
SL3

at 0 is isomorphic to(
O7

Gm
,d − J7(0)dt

t

)
⊕

(
O5

Gm
,d − J5(0)dt

t

)
⊕

(
O3

Gm
,d − J3(0)dt

t

)
,

• KlV2,1
SL3

has slope 1/3 at ∞, and Irr(KlV2,1
SL3

) = 5.

The degree on Kl⊗4
3 from (4.11) induces a degree on KlV2,1

SL3
. As in Theorem 4.15, we have the following:

Proposition 4.32. There exists finite subset Wd,W
mid
d ⊂ G+ such that

• the elements in Wd,k and Wmid
d,k have degree d,

• the de Rham cohomology H1
dR(Gm,KlV2,1

SL3
) is spanned by W1

⋃
W2

⋃
W3

⋃
W4

⋃
W5 with #W1 = #W2 =

#W3 = #W4 = #W5 = 1,

• the middle de Rham cohomology H1
dR,mid(Gm,KlV2,1

SL3
) is spanned by Wmid

4
⋃
Wmid

5 with #Wmid
4 = #Wmid

5 =
1.
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5 Calculation of Hodge numbers
In this section, we prove Theorems 1.2 and 1.4 using irregular Hodge filtrations.

5.1 The case of SymkKln+1 when gcd(k, n + 1) = 1
Here, we prove the first part of Theorem 1.2. We use the irregular Hodge filtrations on twisted de Rham

cohomologies from [33], see Section 3.2, to do the concrete calculation. The Kloosterman connection Kln+1, as a
C[z, z−1]-module, equals to the cokernel of the complex

⊕n
i=1C[x±i , z±]dz ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

d+
∑n

i=1
∂xi

fdxi∧
−−−−−−−−−−−−→ C[x±i , z±]dz ∧ dx1 ∧ · · · ∧ dxn,

where f is the Laurent polynomial in (2.2).
In this way, each vi is identified with (z∂z)i( dz

z
dx1
x1

· · · dxn

xn
) in Hn+1

dR (Gn+1
m , f), because dz

z
dx1
x1

· · · dxn

xn
satisfies

the Bessel differential equation. In fact, we have

(z∂z)i dz
z

dx1

x1
· · · dxn

xn
=

i−1∏
j=1

xj
dz
z

dx1

x1
· · · dxn

xn
,

and

(z∂z)n+1
(dz
z

dx1

x1
· · · dxn

xn

)
= z · dz

z

dx1

x1
· · · dxn

xn
.

Let fk be the Laurent polynomial in (3.6). Then, we have morphisms of exponential mixed Hodge structures

H1
mid(Gm,SymkKln+1)H ↪→H1(Gm,SymkKln+1)H

Def. 3.9=
(
Hnk+1(Gnk+1

m , fk)H)Sk,χn
↪→ Hnk+1(Gnk+1

m , fk)H.
(5.1)

Using the differential form expression of vi above, we notice that an element zjv⊗I0
0 ⊗· · ·⊗v⊗In

n in H1
dR(Gm,Kl⊗k

n+1)
is sent via (5.1) to

zj
k∏

i=I1+1
xi,1

k∏
i=I2+1

xi,2 · · ·
k∏

i=In+1
xi,n

dz
z

dx1,1

x1,1
· · · dxk,n

xk,n

in Hnk+1
dR (Gnk+1

m , fk). Then, the average element zjvI in H1
dR(Gm,SymkKln+1) is sent to

1
k!

∑
σ∈Sk

χn(σ) · zj
k∏

i=I1+1
xσ(i),1

k∏
i=I2+1

xσ(i),2 · · ·
k∏

i=In+1
xσ(i),n

dz
z

dxσ(1),1

xσ(1),1
· · ·

dxσ(k),n

xσ(k),n

= 1
k!

∑
σ∈Sk

zj
k∏

i=I1+1
xσ(i),1

k∏
i=I2+1

xσ(i),2 · · ·
k∏

i=In+1
xσ(i),n

dz
z

dx1,1

x1,1
· · · dxk,n

xk,n

(5.2)

in Hnk+1
dR (Gnk+1

m , fk)Sk,χn . So each element w ∈ Wd,k from Theorem 4.15 is sent to

g(w)dz
z

dx1,1

x1,1
· · · dx1,n

x1,n
· · · dxk,1

xk,1
· · · dxk,n

xk,n
(5.3)

for a polynomial g(w) in z, xi,j , such that each monomial appearing in g(w) has degree d with respect to the
degree (4.11). By abuse of notation, we still denote by w the image of w under (5.1).

Lemma 5.4. Assume gcd(k, n+ 1) = 1. Then Wd,k ⊂ F pHnk+1
dR (Gnk+1

m , fk) if p ≤ nk + 1 − d.

Proof. The Newton polytope ∆(fk) defined by fk has only one facet that does not contain the origin. This facet
lies on the hyperplane (n+ 1)α+

∑
i,j βi,j = 1. So the condition that fk is non-degenerate with respect to ∆(fk)

is equivalent to the condition that the Laurent polynomial fk has no critical points in Gnk+1
m . We can check that

the latter condition holds when gcd(k, n+ 1) = 1. Hence, the irregular Hodge filtration on Hnk+1
dR (Gnk+1

m , fk)
can be computed via the Newton filtration on monomials in R≥0∆(fk) defined in (3.5).
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The cone R≥0∆(fk) is given by inequalities

α+
k∑

i=1

n∑
j=1

ϵi,jβi,j ≥ 0, ϵi,j ∈ {0, 1},

and
∑n

j=1 ϵi,j ≤ 1 for each i. We take the fan F generated by rays

R≥0 · ±
(
α+

k∑
i=1

n∑
j=1

ϵi,jβi,j

)
and R≥0 ±

(
(n+ 1)α+

∑
i,j

βi,j

)
where ϵi,j ∈ {0, 1}. We can check that the simplicial polytopal fan F is regular. So the corresponding toric
variety Xtor is smooth projective. In particular, each irreducible component of the pole divisor P of fk has
multiplicity 1.

Observe that the class of a form

za
k∏

i=1

n∏
j=1

x
bi,j

i,j · dz
z

dx1,1

x1,1
· · · dx1,n

x1,n
· · · dxk,1

xk,1
· · · dxk,n

xk,n

is in F pHnk+1
dR (Gnk+1

m , fk) if this form belongs to Ωnk+1(logS)(⌊(nk + 1 − p)P ⌋), which is equivalent to

ordD

(
za

k∏
i=1

n∏
j=1

x
bi,j

i,j

)
≥ −(nk + 1 − p) (5.5)

for all irreducible components D of P . By [14, p.61], the condition (5.5) is equivalent to

−ξ
(
za

k∏
i=1

n∏
j=1

x
bi,j

i,j

)
≥ −(nk + 1 − p),

where ξ
(
za

∏k
i=1

∏n
j=1 x

bi,j

i,j

)
= (n+ 1)a+

∑
i,j bi,j .

For w ∈ Wd,k, the value of ξ at each monomial appearing in g(w) in (5.3) is d. Therefore, we conclude the
lemma.

Theorem 5.6 (Theorem 1.2.1). Assume that gcd(k, n+ 1) = 1. The Hodge numbers of the pure Hodge structure
H1

mid(Gm,SymkKln+1)H are given by hp,nk+1−p = #Wmid
p,k , where Wmid

p,k are the sets from Theorem 4.16.

Proof. We construct an auxiliary filtration G• on H1
dR,mid(Gm,SymkKln+1) by letting the subspace Gp be

generated by elements w ∈ Wmid
d,k such that p ≤ nk + 1 − d. Lemma 5.4 shows that

GpH1
dR,mid(Gm,SymkKln+1) ⊂ F pH1

dR,mid(Gm,SymkKln+1).

Let dp and δp be the dimensions of the graded quotients with respect to the two filtrations F • and G• on
H1

dR,mid(Gm,SymkKln+1) respectively. Then we have inequalities∑
q≥p

δp ≤
∑
q≥p

dp, (5.7)

for 0 ≤ q ≤ nk + 1, and the equality holds if q = 0 and q = nk + 1. By the Hodge symmetry, we have
dp = dnk+1−p. Since δp are the numbers #Wmid

nk+1−p,k in Theorem 4.16, we also have δp = δnk+1−p.
Combining (5.7) and the symmetry properties of dp and δp, we find∑

q≥p

δp ≤
∑
q≥p

dp =
∑

nk+1−q≤p

dp ≤
∑

nk+1−q≤p

δp =
∑
q≥p

δp,

which implies that δp = dp for each p.

Example 5.8. Assume that 3 ∤ k. The Hodge numbers of H1
mid(Gm,SymkKl3)H are given by

hp,2k+1−p =
{

⌊ p
6 ⌋ p ̸≡ 3, 5 mod 6;

⌊ p
6 ⌋ + 1 else,

if p ≤ k, and hp,2k+1−p = h2k+1−p,p if k > p.
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5.2 The case of SymkKl3 when 3 | k

We compute the Hodge numbers of H1
mid(Gm,SymkKl3)H here (the case when 3 ∤ k is provided by Example 5.8)

in the following theorem, which completes the second part of Theorem 1.2.

Theorem 5.9. Assume that 3 | k. The Hodge numbers of the mixed Hodge structure H1(Gm,SymkKl3)H are

hp,q =



⌊ min(p,q)
6 ⌋ − (δp,k + δp,k+1) p ≡ 0, 1, 2, 4 mod 6, p+ q = 2k + 1,

⌊ min(p,q)
6 ⌋ + 1 − (δp,k + δp,k+1) p ≡ 3, 5 mod 6, p+ q = 2k + 1,

(1 + 2⌊ k
2 ⌋ − k) + 1 p = q = k + 1,

1 k + 2 ≤ p = q ≤ 2k + 1, 2 ∤ p
0 else,

where δa,b are the Kronecker symbols. In particular, the first and the second line of the formula give the Hodge
numbers of the pure Hodge structure H1

mid(Gm,SymkKl3)H.

Remark 5.10. The first two lines of the formula for Hodge numbers are calculated in Theorem 5.23. The rest
three lines of the formula for Hodge numbers are deduced from the second and the third lines of the formula for
Hodge numbers of H1(Gm,SymkK̃l3)H in Proposition 5.17 because H1(Gm,SymkKl3)H/H1

mid(Gm,SymkKl3)H is
isomorphic to H1(Gm,SymkK̃l3)H/H1

mid(Gm,SymkK̃l3)H by Remark 4.29.

5.2.1 The inverse Fourier transform

Let j0 : Gm ↪→ A1 be the inclusion. Recall that we defined an endofunctor Π on the category of regular
holonomic DA1-modules in Section 3.1, which can be lifted to the projector Π in (3.1). Recall that the Fourier
transform FT sends DA1

t
-modules on the affine line A1

t to DA1
τ
-modules on the dual affine line A1

τ . In the proof
of [10, Prop. 2.10], we have an isomorphism of D-modules

SymkK̃l3 ≃ j+
0 FT(gk+O)Sk ,

where gk : G2k
m → A1 is defined by sending (yi,j) to

∑
i(

∑
j yi,j + 1∏

j
yi,j

), and the action of the symmetric group
Sk on the coordinates is given by σ · yi,j = yσ(i),j . By the definition of the intermediate extension, we have a
short exact sequence

0 → j0†+SymkK̃l3 → j0+SymkK̃l3 → C̃k → 0,

where C̃k is supported at the origin. Let M̃ = FT−1j0†+SymkK̃l3. By the isomorphism of functors,

Π ◦ FT−1 ≃ FT−1 ◦ j0+j
+
0

[19, Prop. 12.3.5], we deduce that Π(M̃) ≃ FT−1(j0+SymkK̃l3). We get from the above an exact sequence of
regular holonomic D-modules on the dual affine line A1

τ

0 → M̃ → Π(M̃) → M̃ ′ → 0. (5.11)

The sequence (5.11) can also be lifted to a short exact sequence in MHM(A1
τ )

0 → M̃H → Π(M̃)H → M̃
′H → 0,

where M̃H is a pure Hodge module of weight 2k, and M̃ ′H is a constant mixed Hodge module of weight ≥ 2k+ 1,
see [10, Prop. 2.21]. Moreover, the structure of M̃ ′ can be made precise, as stated in Corollary 5.13.

Proposition 5.12. Let S ⊂ A1 be the set of points x such that there exists a triple I ∈ N3 such that
x = 3CI = 3(I0 + ζI1 + ζ2I2) and |I| = k. Then:

(1). The inverse Fourier transform M̃ is a regular holonomic DA1
τ
-module. Its generic rank is (k+1)(k+2)

2 −⌊ k+2
2 ⌋

and its singularity set is S. The vanishing cycle space at a singularity x ∈ S has dimension #{I | x =
3CI , |I| = k} with trivial monodromy. Moreover, the monodromy at ∞ is unipotent, with one Jordan block
of size 2k − 4m for each m = 0, . . . , ⌊ k

2 ⌋;
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(2). Π(M̃) is a regular holonomic DA1
τ
-module. Its generic rank is (k+1)(k+2)

2 and its singularity set is S.
The vanishing cycle space at a singularity x ∈ S has dimension #{I | x = 3CI , |I| = k} with trivial
monodromy. Moreover, the monodromy at ∞ is unipotent, with one Jordan block of size 2k − 4m+ 1 for
each m = 0, . . . , ⌊ k

2 ⌋;

Proof. Let ψt SymkK̃l3 be the nearby cycle module at 0 of j0+SymkK̃l3. Recall that in Section 2.2.1, we enhanced
the action of the nilpotent part Nk of the local monodromy on ψt SymkK̃l3 to an sl2-action. From Corollary 2.6,
we conclude that the monodromy of ψt SymkK̃l3 is unipotent, with one Jordan block of size 2k − 4m+ 1 for
each m ∈ {0, . . . , ⌊ k

2 ⌋}. By [30, Lem. 5.1.4], the vanishing cycle module ϕtj0†+SymkK̃l3 of the intermediate
extension j0†+SymkK̃l3 is identified with imNk. So the monodromy action of ϕtj0†+SymkK̃l3 is unipotent, with
one Jordan block of size 2k − 4m for each m ∈ {0, . . . , ⌊ k

2 ⌋}.
By construction, we have M̃ = FT−1j0†+SymkK̃l3. Applying the (inverse) stationary phase formula [25] to

M̃ , it follows that the nearby cycle ψ1/τM̃ is isomorphic to ϕtj0†+SymkK̃l3 ≃ imNk. Therefore, the monodromy
of ψ1/τM̃ is unipotent, with one Jordan block of size 2k − 4m for each 0 ≤ m ≤ ⌊ k

2 ⌋. The primitive parts of the
Lefschetz decomposition of ψ1/τM̃ are

P2k−1,P2k−5, . . . ,

and each P2k−1−4m is 1-dimensional. By the property of the Lefschetz decomposition, the rank of M̃ is

⌊ k−1
2 ⌋∑

m=0
(2k − 4m) = (k + 1)(k + 2)

2 −
⌊
k + 2

2

⌋
.

In the end, by applying the stationary phase formula to j0†+SymkK̃l3 = FT(M̃), we conclude from the
local structure of j0†+SymkK̃l3 at ∞ in Proposition 2.13 that the singular set of M̃ is equal to S. In fact, each
singular point a ∈ S corresponds to a component Eat in the local structure of j0†+SymkK̃l3 at ∞. So we proved
all claims in the first statement. The proof of the second statement is similar.

Corollary 5.13. The graded pieces of M̃ ′H with respect to the weight filtration have rank 1 and are of weight
4k − 4m for each m = 0, 1, . . . , ⌊ k

2 ⌋.

Proof. By applying the nearby cycle functor to the exact sequence (5.11), and using the rank formula of M̃H

and Π M̃H in Proposition 5.12, we know that M̃ ′H has rank
⌊

k+2
2

⌋
.

To prove the weight property of M̃ ′H, it suffices to compute that of ψ1/τ M̃
′H, because the constant mixed

Hodge module M̃ ′H extends smoothly at ∞. By a similar argument in the proof of Proposition 5.12, we know
that the primitive parts in the Lefschetz decomposition of ψ1/τ Π M̃H are

P2k+1,P2k−3, . . . ,

all being 1-dimensional. Since the weight filtration on ψ1/τ Π M̃H is identified with the monodromy filtration
centered at 2k − 1 [21, p. 1740], it follows that P2k+1−4m is pure of weight 4k − 4m, of rank 1. At last, by
Equation (A.2) in the proof of [21, Prop. A.3], the graded pieces of ψ1/τ M̃

′H are identified with the primitive
parts in the Lefschetz decomposition of ψ1/τ Π M̃H. Therefore, the graded pieces grW

4k−4mM̃
′H with respect to

the weight filtration are P2k−1−4m(−1), of rank 1 and weight 4k − 4m.

5.2.2 The Hodge filtration for SymkK̃l3
Before computing the Hodge filtration on the mixed Hodge structure H1(Gm,SymkKl3)H, we calculate that

on H1(Gm,SymkK̃l3)H, which is useful in §5.2.3.
We define4 the mixed Hodge structure H1(A1, j0†+SymkK̃l3)H by

coker (Nk : ψτ,1M̃
H → ψτ,1M̃

H(−1)). (5.14)

4We use (5.14) as the definition of H1(A1, j0†+SymkK̃l3)H to avoid using the notation from [10, Not. A. 29].
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Applying [10, Exe. A.2 & Thm. A.30] to the short exact sequence (5.11), we have a short exact sequence of mixed
Hodge structures

0 → H1(A1, j0†+SymkK̃l3)H ι−→ H1(Gm,SymkK̃l3)H → V H → 0, (5.15)

where V H is the cokernel of ι. By applying [10, Cor. A31] to the pure Hodge module M̃H, we know that V H is
mixed of weight ≥ 2k + 2, and satisfies

dim grp
F grW

ℓ V H = rk grp−1
F grW

ℓ−1M̃
′H (5.16)

for all p, ℓ ∈ Z. In particular, by the above and [10, Prop. 2.21], the weights of the mixed Hodge structure
H1(A1, j0†+SymkK̃l3)H are at least 2k + 1, and we have

H1
mid(Gm,SymkK̃l3)H = grW

2k+1H1(A1, j0†+SymkK̃l3)H.

Proposition 5.17. The Hodge numbers of H1(Gm,SymkK̃l3)H are given by

hp,q =



⌊
min{p,q}+1

2

⌋
− (δp,k + δp,k+1) · d(k, 3) p+ q = 2k + 1

(1 + 2⌊ k
2 ⌋ − k) + d(k, 3) p = q = k + 1

1 k + 2 ≤ p = q ≤ 2k + 1, 2 ∤ p
0 else

where d(k, 3) is 1 if 3 | k and 0 otherwise, and δa,b is the Kronecker symbol, which is 1 if a = b and 0 otherwise.
In particular, the first line of the formula for Hodge numbers gives the Hodge numbers of H1

mid(Gm,SymkK̃l3)H.

Proof. We proceed in three steps.
Step 1: We compute the rank of the Hodge filtration on M̃H . Using a similar argument as in the proof of
Proposition 5.12, the monodromy of the nearby cycle ψ1/τM̃

H at ∞ is unipotent, with one Jordan block of size
2k − 4m for each m = 0, . . . , ⌊ k

2 ⌋. Therefore, the primitive parts P2k−4m−1 in the Lefschetz decomposition have
dimension one and are of Hodge–Tate type. Since M̃ is pure of weight 2k, the primitive part P2k−4m−1 is pure
of weight 4k− 4m− 2. Hence, P2k−4m−1 = grW

4k−4m−2P2k−4m−1. Then by the Lefschetz decomposition, for each
ℓ in Z, the graded quotient grW

2k+ℓ−1ψ1/τM̃
H is Hodge–Tate of dimension

#{m | 0 ≤ 4m ≤ 2k − |ℓ| − 1}

if 2 ∤ ℓ, and 0 if 2 | ℓ. By the compatibility of [30, 3.2.1] between the Hodge filtration and the Kashiwara-Malgrange
filtration of the filtered D-modules underlying Hodge modules, we have

rk grp
F M̃

H = dim grp
Fψ1/τM̃

H

in the case of smooth curves. From this formula, we conclude that

rk grp
F M̃

H =
⌊

min{p, 2k − 1 − p} + 2
2

⌋
. (5.18)

Step 2: We compute the Hodge filtration on H1(A1, j0†+SymkK̃l3)H.
If 3 ∤ k, by Proposition 5.12, 0 is not a singular point of M̃ . Therefore, the Hodge numbers can be computed

using [10, Cor. A31(ii)]. More precisely, the nilpotent part of the monodromy operator acts on ψτ,1M̃
H = ψτM̃

H

by 0. So

H1(A1, j0†+SymkK̃l3)H = ψτM̃
H(−1)

is pure of weight 2k+ 1, which coincides with H1
mid(Gm,SymkK̃l3)H. Its Hodge numbers hp,2k+1−p are the ranks

of grp−1
F M̃H given by (5.18), which give the first line of the formula for the Hodge numbers when 3 ∤ k.

If 3 | k, the dimension of the formal regular component of SymkK̃l3 at ∞ is 1. Therefore, τ = 0 is a singular
point of M̃ , and the dimension of the vanishing cycle ϕτ,1M̃

H is 1. By (5.14), it suffices to study the monodromy
on the nearby cycle ψτ,1M̃

H. Since M̃H is an intermediate extension at τ = 0 and ϕτ,1M̃
H has dimension 1, the
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nilpotent part of the monodromy operator, denoted by N , acting on ψτ,1M̃
H satisfies N2 = 0. We obtain that the

primitive parts of the Lefschetz decomposition of grWψτ,1M̃
H are P1 = grW

2kψτ,1M̃
H and P0 = grW

2k−1ψτ,1M̃
H,

where dimP1 = dimNP1 = 1, and dimP0 = rk M̃H − 2. In conclusion,

grW cokerN = P0(−1) ⊕ P1(−1).

Hence, the direct summand P0(−1) is H1
mid(Gm,SymkK̃l3)H. Also, the direct summand P1(−1) is

grW
2k+2H1(Gm,SymkK̃l3)H,

whose rank is 1. It is of Hodge–Tate type (k + 1, k + 1). Then using the equality derived from the Lefschetz
decomposition

rk grp−1
F M̃H = rk grp−1

F ψτ,1 M̃
H = dim grp

F (P0(−1)) + grp
F (P1(−1)) + grp

F (NP1(−1)),

we proved the first line of the formula for Hodge numbers when 3 | k. Moreover, we show that d(k, 3) appears in
the second line of the formula for the Hodge numbers.
Step 3: We compute the Hodge filtration on V H. By Corollary 5.13, since the graded pieces of M̃ ′H with respect
to the weight filtration have rank 1, of weight 4k − 4m for m = 0, 1, . . . , ⌊ k

2 ⌋, they are all of Hodge–Tate type
(2k − 2m, 2k − 2m). Thus, by (5.16), we have

dim gr2k−2m+1
F grW

4k−4m+2V
H = 1

for m = 0, . . . , ⌊ k
2 ⌋ and the remaining graded pieces are 0. Therefore, we get the second and the third line of the

formula for the Hodge numbers by using the exact sequence (5.15).

5.2.3 Proof of Theorem 1.2.2

Compared to the method in Section 5.1, we need to find another way to compute the irregular Hodge filtration
when 3 | k because the function fk is degenerate with respect to its Newton polytope ∆(fk). We need to choose
a compactification of (Gnk+1

m , fk) to calculate the irregular Hodge filtration, similar to the one in [10, §4.3.2].

A compactification of (Gnk+1
m , fk)

Definition 5.19 ([22, Def. 2.6]). Let K be a field of characteristic 0. Let U be a smooth quasi-projective variety
over K and f ∈ OU (U). A non-degenerate compactification of a pair (U, f) is a compactification X of U such
that

• D = X\U is a strict normal crossing divisor,

• f extends to a rational morphism f : X 99K P1,

• étale locally or analytical locally near each point in the pole divisor P , there is a coordinate system
{x1, . . . , xr, y1, . . . , ym, z1 . . . , zl} of X such that

D = V

( r∏
i=1

xi ·
m∏

j=1
yj

)
, and f = 1∏r

i=1 x
ei
i

or z1∏r
i=1 x

ei
i

for some ei ∈ Z>0.

Let G2k
m be the torus with coordinates yi,j for 1 ≤ i ≤ k and j = 1, 2. We begin with the pair

(
G2k

m , gk =∑k
i=1

(
yi,1 + yi,2 + 1

yi,1yi,2

))
. Let M =

⊕k
i=1 (Zyi,1 ⊕ Zyi,2) be the lattice of monomials on G2k

m and N =⊕k
i=1 (Zei,1 ⊕ Zei,2) be the dual lattice where ei,j is dual to yi,j . We consider the toric compactification X of

G2k
m attached to the regular simplicial fan F in NR generated by the rays

R≥0 ·
k∑

i=1
ϵiei,1 + ηiei,2
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where ϵi, ηi ∈ {0,±1} and (ϵi, ηi) ̸= (0, 0) for at least one i. Each simplicial cone of maximal dimension 2k in F
is regular and provides an affine chart of X, which is isomorphic to A2k. On each chart, the function gk has the
same structure. For example, we can consider the regular cone generated by

γi0,1 :=
∑

1≤i≤i0−1,1≤j≤2
ei,j + ei0,1 and γi0,2 =

∑
1≤i≤i0,1≤j≤2

ei,j

for 1 ≤ i0 ≤ k, where the affine ring associated with the dual cone is the polynomial ring Q[ui, vi] such that

ui,j =


yi,1/yi,2 j = 1,
yi,2/yi+1,1 i < k, j = 2,
yk,2 i = k, j = 2.

In this chart, we rewrite gk as g1/
(
u1,1u

2
1,2 ·

∏
2≤i≤k,1≤j≤2 u

2
2,j

)
, where

g1 = 1 +
k−1∑
e=1

u1,1u
2
1,2 ·

∏
2≤i≤e,1≤j≤2

u2
i,j · ue+1,1 + u1,1u

2
1,2 ·

∏
2≤i≤k,1≤j≤2

u2
i,j · h

for a polynomial h. So the toric variety X provides a non-degenerate compactification of (G2k
m , gk), where the

closure of the zero locus of gk, and X\G2k
m form a strict normal crossing divisor.

The product P1
t ×X is a compactification of (G2k+1

m , t · gk) ≃ (G2k+1
m , f̃k). Let S1, . . . , SN be the irreducible

components of X\G2k
m . We first do the blow-up along the intersection of 0 ×X and S1. Then, we do blow-ups

along the intersection of the proper transform of 0 ×X and the proper transform of Si for 2 ≤ i ≤ N successively.
The resulting variety X is a compactification of G2k+1

m .
We can verify that (X, f̃k) is a non-degenerate compactification of (G2k+1

m , t · gk) if 3 ∤ k. Otherwise, we need
to do two more blow-ups. The first one is at each closed point of

∞ × Z
(
y3

i,1 − 1, y3
i,2 − 1,

∑
i

yi,1 + yi,2 + 1
yi,1yi,2

)
,

and the second one is on the intersection of the exceptional divisors from the previous step and the proper
transform of ∞ × X. We denote by E1, E2 the exceptional divisors of the two steps. We denote by X̃ the
resulting variety. By a direct computation, we can verify that ordE1 f̃k = 1 and ordE2 f̃k = 0, and (X̃, f̃k) is a
non-degenerate compactification of (G2k+1

m , f̃k).

A lemma Similar to (5.1), we have morphisms of exponential mixed structures

H1
mid(Gm,SymkKln+1)H ↪→ Hnk+1(Gnk+1

m , fk)H ↪→ Hnk+1(Gnk+1
m , f̃k)H.

By abuse of notation, for an element w in the set W̃d,k from Theorem 4.25, we denote by w its image in
H2k+1

dR (G2k+1
m , f̃k) via the above inclusion.

Lemma 5.20. Assume 3 | k. Then W̃d,k ⊂ F pH2k+1
dR (G2k+1

m , f̃k) if p ≤ 2k + 1 − d and k − d ≥ 0.

Proof. Let X̃ be the compactification as above and D = X̃\G2k+1
m is the boundary divisor. Because the

indeterminacy locus of the rational map f̃k : X̃ 99K P1 has codimension of at least 2 in X̃, we can take the pole
divisor P as the closure of f̃k. The exceptional divisors E1 and E2 are not contained in the support of the pole
divisor because ordE1 f̃k = 1 and ordE2 f̃k = 0.

As in (5.2), the image of an element tavI0
0 v

I1
1 v

I2
2 of degree d in

H2k+1
dR (G2k+1

m , f̃k)Sk = H2k+1
dR (G2k+1

m , t · gk)Sk

is of the form

td
1
k!

∑
σ∈Sk

k∏
i=I1+1

yσ(i),1

k∏
i=I2+1

yσ(i),2
dt
t

dy1,1

y1,1

dy1,2

y1,2
· · · dyk,1

yk,1

dyk,2

yk,2

up to a nonzero constant (compared to (5.2) we did a change of variable xi,j = tyi,j). By a direct computation,
we find that

ordE1(tavI0
0 v

I1
1 v

I2
2 ) = 2k − d and ordE2(tavI0

0 v
I1
1 v

I2
2 ) = 2k − 2d.
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Since each w ∈ W̃d,k is a linear combination of tavI0
0 v

I1
1 v

I2
2 of degree d, we find

W̃d,k ⊂ Γ(X̃,Ω2k+1 (logD) (dP − (2k − d)E1 − (2k − 2d)E2)).

We further have

W̃d,k ⊂ Γ(X̃,Ω2k+1 (logD) (⌊2k + 1 − η⌋P )),

if k − d ≥ 0 and d ≤ 2k + 1 − η. In this case, there is a natural map

Γ(X̃,Ω2k+1 (logD) (⌊2k + 1 − η⌋P )) → F ηH2k+1(G2k+1
m , f̃k),

see [33, §4 b)] or [10, § 4.3.3], which completes the proof of the lemma.

Proposition 5.21. When 3 | k and p ≥ k + 1, the vector space F pH1
dR(Gm,SymkK̃l3) is

span
(
W̃d,k | p ≤ 2k + 1 − d

)
.

Proof. We construct a filtration G• on the de Rham cohomology H1
dR(Gm,SymkK̃l3) by

GpH1
dR(Gm,SymkK̃l3) := Span(W̃d,k | p ≤ 2k + 1 − d).

Using the map in (5.1) and Lemma 5.20, we deduce that

GpH1
dR(Gm,SymkK̃l3) ⊂ F pH1

dR(Gm,SymkK̃l3)

if p ≥ k + 1.
Let dp = dim grp

F and δp = dim grp
G. Then ∑

q≥p

δp ≤
∑
q≥p

dp (5.22)

and dp =
∑

q h
p,q if p ≥ k + 1, where hp,q is defined by Proposition 5.17. By Theorem 4.25, we know that the

number δp is ñ2k+1−p,k = ⌊ 2k+1−p
2 ⌋ + 1 for any p ≥ k + 1, which coincides with dp by Proposition 5.17. We

deduce that the filtration G• coincides with the Hodge filtration F • when p ≥ k + 1.

The Hodge numbers

Theorem 5.23 (Theorem 1.2.2). Assume that 3 | k. For p ≤ k, the Hodge numbers of the mixed Hodge structure
H1

mid(Gm,SymkKl3)H are given by

hp,2k+1−p = h2k+1−p,p = −δk,p +
{

⌊ p
6 ⌋ p ̸≡ 3, 5 (mod 6);

⌊ p
6 ⌋ + 1 p ≡ 3, 5 (mod 6).

Proof. The set
⋃

d Wd,k in Theorem 4.15 is a basis for H1
dR(Gm,SymkKl3). We know that w ∈ Wd,k is in

F pgrW
2k+1H1

dR(Gm,SymkKl3) if

p ≤ 2k + 1 − d and k − d ≥ 0

by Lemma 5.20. Since we chose Wd,k as a subset of W̃d,k in Theorem 4.25, we deduce that w is nonzero in the
graded quotient gr2k+1−d

F H1
dR(Gm,SymkKl3) if k − d ≥ 0 by Proposition 5.21. Hence,

dim gr2k+1−d
F H1

dR(Gm,SymkKl3) ≥ #Wd,k = nd,k.

By Proposition 5.17 and Remark 5.10, we notice that

dim gr2k+1−d
F H1

dR(Gm,SymkKl3)/H1
dR,mid(Gm,SymkKl3)

= dim gr2k+1−d
F H1

dR(Gm,SymkK̃l3)/H1
dR,mid(Gm,SymkK̃l3)

=δd,k + (1 + 2⌊ d
2 ⌋ − d).
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So, the Hodge numbers hd,2k+1−d = h2k+1−d,d = dim gr2k+1−d
F H1

dR,mid(Gm,SymkKl3) is at least

nd,k − δd,k − (1 + 2⌊ d
2 ⌋ − d) = nmid

2k+1−d,k

if k − d ≥ 0 by the formulas of nd,k and nmid
d,k in Theorems 4.25 and 4.26. Then, we deduce that

dim H1
dR,mid(Gm,SymkKl3) =

2k+1∑
d=0

hd,2k+1−d ≥ 2
k∑

d=0
nmid

d,k

(∗)= dim H1
dR,mid(Gm,SymkKl3),

where (*) can be checked directly5. Therefore, we have hd,2k+1−d = h2k+1−d,d = nmid
d,k for d ≤ k, which are

exactly numbers stated in the proposition.

5.3 The case of SymkAin when gcd(k, n) = 1
We give the proof of Theorem 1.4 here. The Airy connection Ain, as a C[z]-module, equals to the cokernel of

the complex

C[x, z]dz d+∂xfdx∧−−−−−−−→ C[x, z]dz ∧ dx,

where f is the Laurent polynomial in (2.21). In this way, the classes vi are sent to xi−1dzdx for 0 ≤ i ≤ n− 1,
and we have (z∂z)ndz ∧ dx = z · dz ∧ dx.

Let fk be the Laurent polynomial in (3.10). Then we have morphisms of exponential mixed Hodge structures

H1
mid(A1,SymkAin)H = H1(A1,SymkAin)H

=
(

Hk+1(Ak+1, fk)H
)Sk,χ

↪→ Hk+1(Ak+1, fk)H.
(5.24)

Via the above maps, an element zjvI is sent to

1
k!

∑
σ∈Sk

(
zj

k∏
i=I1+1

xσ(i)

k∏
i=I2+1

x2
σ(i) · · ·

k∏
i=In−1+1

xn−1
σ(i)

)
dz dx1 · · · dxk

in Hk+1
dR (Ak+1, fk)Sk,χ, similar to (5.2). So each element w ∈ Wd,k from Theorem 4.30 is sent to

g(w)dz dx1 · · · dxk (5.25)

for a polynomial g(w) in z, xi such that each term of g(w) has degree d with respect to the degree (4.11). By
abuse of notation, we still denote by w its image under (5.24).

Lemma 5.26. Assume that gcd(k, n) = 1. Then Wd,k lies in F pHk+1
dR (Ak+1, fk) if p ≤ nk+1−d

n+1 .

Proof. Thanks to the morphism of exponential mixed Hodge structures

Hk+1(Ak+1, fk)H ↪→ Hk+1(Gk+1
m , fk)H,

it suffices to show that Wd,k ⊂ F pHk+1
dR (Gk+1

m , fk) if p ≤ nk+1−d
n+1 .

The Newton polytope ∆(fk) defined by fk has only one facet that does not contain the origin, which is
lying on the hyperplane n · α+

∑
i βi = 1. We can check that fk is non-degenerate with respect to ∆(fk) when

gcd(k, n) = 1. So the irregular Hodge filtration on Hk+1
dR (Gk+1

m , fk) can be computed via the Newton filtration
on monomials in R≥0∆(fk).

The cone R≥0∆(fk) is given by inequalities

−α+
k∑

i=1
βi ≥ 0, α ≥ 0, and βi ≥ 0.

5We can write k = 6ℓ + r for r = 0 or 3 and check the identity in terms of ℓ and r.
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We take the fan F generated by rays

R≥0 · ±
(

−α+
k∑

i=1
βi

)
, R≥0 · ±α, R≥0 · ±βi and R≥0 · ±

(
nα+

∑
i

βi

)
.

We can verify that the simplicial polytopal fan F is regular. So the corresponding toric variety Xtor is smooth
projective. In particular, each irreducible component of the pole divisor P of fk has multiplicity 1.

As in the proof of Lemma 5.4, the class of zj
∏

i x
ai
i

dz
z

dx1
x1

· · · dxk

xk
is in F pHk+1

dR (Gk+1
m , fk) if it belongs to

Ωk+1(logS)(⌊(k + 1 − p)P ⌋), which is equivalent to

ordD

(
za

∏
i

xbi
i

)
≥ −(k + 1 − p)

for all irreducible components D of P . By [14, p.61], this condition is again equivalent to

−ξ
(
za

∏
i

xbi
i

)
≥ −(k + 1 − p),

where ξ(za
∏

i x
bi
i ) = (n · a+

∑
i bi)/(n+ 1).

For w ∈ Wd,k, the value of ξ at each terms of g(w) in (5.25) is (d + n + k)/(n + 1). Therefore, w ∈
F pHk+1

dR (Gk+1
m , fk) if p ≤ nk+1−d

n+1 .

Theorem 5.27 (Theorem 1.4). Assume that gcd(k, n) = 1. The possible jumps of the Hodge filtration of
H1

mid(A1,SymkAin)H are p+n+k
n+1 for 0 ≤ p ≤ nk − n − k + 1. The Hodge numbers h

p+n+k
n+1 , nk+1−p

n+1 are #Wp,k,
where Wp,k are sets from Theorem 4.30.

Proof. The proof is similar to that of Theorem 5.6. We construct an auxiliary filtration G• on H1
dR(A1,SymkAin),

by letting the subspace GpH1
dR(A1,SymkAin) be generated by elements w ∈ Wd,k such that p ≤ k+ 1 − d+n+k

n+1 =
nk+1−d

n+1 . We deduce from Lemma 5.26 that

GpH1
dR(A1,SymkAin) ⊂ F pH1

dR(A1,SymkAi).

Let dp = dim grp
F H1

dR(A1,SymkAin) and δp = dim grp
GH1

dR(A1,SymkAin) be the dimensions of the graded
quotients with respect to F • and G•. Then for 0 ≤ q ≤ k + 1 we have∑

q≥p

δp ≤
∑
q≥p

dp, (5.28)

where the equality holds if q = 0 and q = k+ 1. By the Hodge symmetry, we have dp = dk+1−p. Since δp are the
numbers nnk−n−k+1−p in Theorem 4.30, we have δp = δk+1−p.

Combining (5.28) and the symmetric properties of dp and δp, we find∑
q≥p

δp ≤
∑
q≥p

dp =
∑

k+1−q≤p

dp ≤
∑

k+1−q≤p

δp =
∑
q≥p

δp,

which implies that δp = dp for each p.

Example 5.29. Assume that 3 ∤ k. The Hodge numbers of H1(A1,SymkAi3)H are given by

h
p+3+k

4 , 3k+1−p
4 =

{
⌊ p

6 ⌋ p ̸≡ 3, 5(mod 6);

⌊ p
6 ⌋ + 1 else,

if p ≤ k, and h
p+3+k

4 , 3k+1−p
4 = h

3k+1−p
4 , p+3+k

4 if k > p.
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5.4 The case of KlV2,1
SL3

Let f : G9
m → A1 be the Laurent polynomial

(xi, yi, z) 7→
4∑

i=1

(
(xi + yi + z

xiyi

)
.

The symmetric group S4 acts on the sub-indices of the coordinates. As in [10, Cor. 2.15], we have

H1
dR,mid

(
Gm,KlV2,1

SL3

)
≃ H9

dR(G9
m, f)P×Q,χ.

We define the associated exponential mixed Hodge structure as

H1
mid

(
Gm,KlV2,1

SL3

)H
:= (H9

mid(G9
m, f)H)P×Q,χ.

By considering an analogue of the inclusion (5.1), the elements in Wmid
4 and Wmid

5 are mapped to

g
dz
z

∏
i,j

dxi,j

xi,j
and h

dz
z

∏
i,j

dxi,j

xi,j

in H9
dR(G9

m, f), for some polynomials in z, xi, yi of degree 4 and 5 respectively.
Because f is non-degenerate with respect to ∆(f), we can use a similar argument as in the proves of

Lemma 5.4 and Theorem 5.6 to get the Hodge numbers as follows:

Proposition 5.30. We have

Wmid
5 ⊂ gr4

F H1
dR,mid

(
Gm,KlV2,1

SL3

)
and Wmid

4 ⊂ gr5
F H1

dR,mid

(
Gm,KlV2,1

SL3

)
.

In particular, the nonzero Hodge numbers of the pure Hodge structure H1
mid

(
Gm,KlV2,1

SL3

)H
are h4,5 = h5,4 = 1.
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