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Abstract
Fedorov and Sabbah–Yu calculated the (irregular) Hodge numbers of hypergeometric

connections. In this paper, we study the irregular Hodge filtrations on hypergeometric
connections defined by rational parameters, and provide a new proof of the aforementioned
results. Our approach is based on a geometric interpretation of hypergeometric connections,
which enables us to show that certain hypergeometric sums are everywhere ordinary on
|Gm,Fp | (i.e., “Frobenius Newton polygon equals to irregular Hodge polygon”).

1 Introduction
The primary focus of this article is to investigate the Hodge theoretic properties of confluent

hypergeometric differential equations. These differential equations have irregular singularities and
are equipped with irregular Hodge filtrations, constructed in [32]. The irregular Hodge theory,
initiated by Deligne [12], extends the classical Hodge theory and has been developed in a series
works such as [31, 24, 42, 15, 33, 32].

Let n ≥ m be two non-negative integers, λ a real number, and α = (α1, . . . , αn) and
β = (β1, . . . , βm) two non-decreasing sequences of real numbers in [0, 1). Let S be the scheme
Gm\{1} (resp. Gm) if n = m (resp. n > m) with coordinate z. The hypergeometric equation is
the linear differential equation defined by the differential operator

Hypλ(α;β) := λ

n∏
i=1

(z∂z − αi) − z

m∏
j=1

(z∂z − βj). (1.0.0.1)

The hypergeometric connection Hypλ(α;β) is the associated connection on the complex algebraic
variety SC, see (2.1.1.1). We say that the pair (α, β) is non-resonant if αi ̸= βj for any i and
j. In this case, the hypergeometric connection Hypλ(α;β) is irreducible and rigid, as seen by
combining the works of Beukers–Heckman [9] and Katz [23].

When n = m, hypergeometric connections have regular singularities at 0, 1, and ∞. Simpson
demonstrated that rigid irreducible connections on curves with regular singularities, whose
eigenvalues of monodromy actions at singularities have norm 1, underlie complex variations of
Hodge structure [37, Cor. 8.1]. In this case, Fedorov [16] computed the Hodge numbers associated
with the Hodge filtrations of irreducible hypergeometric connections [16], and Martin gave an
alternative proof in [25].

When n > m, hypergeometric connections are called confluent, indicating the merging of
singularities, and have a regular singularity at 0 and an irregular singularity at ∞. Sabbah
showed in [32, Thm. 0.7] that a rigid irreducible connection on P1 with real formal exponents
at each singular point admits a variation of irregular Hodge structure away from singularities.
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For confluent hypergeometric connections, Sabbah and Yu computed the corresponding irregular
Hodge numbers [34]. In addition, Castaño Domínguez–Sevenheck [11, Thm. 4.7] and Castaño
Domínguez–Reichelt–Sevenheck [10, Thm. 5.8] explicitly calculated the irregular Hodge filtration
for m = 0 or 1, respectively.

This article focuses on cases where λ, α, and β are rational numbers. We explicitly construct
the irregular Hodge filtration F •

irr on hypergeometric connections in Theorem 3.3.1 and provide a
uniform method for reproving the results of Fedorov and Sabbah–Yu.

Theorem 1.0.1 (3.3.1). Suppose (α, β) is non-resonant. We define a map θ : {1, . . . , n} → R by

θ(k) = (n−m)αk + #{i | βi < αk} + (n− k) −
n∑

i=1
αi +

m∑
j=1

βj . (1.0.1.1)

Then, up to an R-shift1, the jumps of the irregular Hodge filtration on Hypλ(α, β) occur at θ(k)
and for any p ∈ R we have

rk grp
Firr

Hypλ(α;β) = #θ−1(p).

1.1 Application to Frobenius slopes of hypergeometric sums
Our method has an arithmetic application to the Frobenius slopes of hypergeometric sums,

the arithmetic incarnation of hypergeometric connections [23].
Let K be a p-adic field with residue field Fp containing an element π satisfying πp−1 = −p.

Such an element π corresponds to an additive character ψ : Fp → K× by Dwork’s theory [14].
Suppose that (α, β) is non-resonant and that αi = ai

p−1 , βj = bj

p−1 are in 1
p−1Z. Miyatani [27]

showed that there exists a unique Frobenius structure φ (up to a scalar) on the analytification of
hypergeometric connection Hyp(−1)m+np/πn−m(α;β) over SK , which underlies an overconvergent
F -isocrystal on Sk (called the hypergeometric F -isocrystal). The Frobenius trace of φ at a point
a ∈ S(Fq) is given by the hypergeometric sum Hyp(α;β)(a), defined by

∑
xi,yj∈F×

q ,
x1···xn=ay1···ym

ψ

(
Tr
( n∑

i=1
xi −

m∑
j=1

yj

))
·

n∏
i=1

ωai(Nm(xi))
m∏

j=1
ω−bj (Nm(yj)),

where ω : F×
p → K× denotes the Teichmüller lift and Tr = TrFq/Fp

, Nm = NmFq/Fp
.

Frobenius eigenvalues of φ at a are Weil numbers and have complex absolute valuations
q

n+m−1
2 via an isomorphism K ≃ C. When (α, β) is resonant, the above hypergeometric sum can

also be written as a sum of n Weil numbers. It is expected that the p-adic valuations of these
Frobenius eigenvalues (called Frobenius slopes) are related to the (irregular) Hodge filtration. Our
construction allows us to show the following result.

Theorem 1.1.1 (4.0.2). Suppose n > m and that αi, βj lie in Z
p−1 ∩ [0, 1). For every p-power

q and a ∈ Gm(Fq), the multi-set of Frobenius eigenvalues of Hyp(α;β)(a) (normalized by ordq)
coincides with the multi-set of irregular Hodge numbers {θ(1), . . . , θ(n)} defined in (1.0.1.1).

Following [26], we encode the information of the p-adic valuations of Frobenius eigenvalues
and (irregular) Hodge numbers into the Newton polygon and the (irregular) Hodge polygon
respectively, see Definition 4.0.1.

1Our Hodge numbers θ(k)’s are normalized according to the geometric interpretation in Proposition 2.4.1, and
is different from those of Fedorov and Sabbah–Yu by a shift.
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For crystalline cohomology groups of a smooth proper variety over k, Mazur and Ogus showed
that the associated (Frobenius) Newton polygon lies above the Hodge polygon defined by Hodge
numbers [26, 8]. For F -isocrystals associated with exponential sums, “Newton above Hodge”
type results were studied by Dwork’s school. Dwork, Sperber and Wan [14, 38, 39] proved that
Kloosterman sums (hypergeometric sums of type (n, 0) with α = (0, . . . , 0)) are everywhere
ordinary on |Gm,Fp | (i.e. two polygons coincide for every closed point a ∈ |Gm|). We use a
“Newton above Hodge” result of Adolphson–Sperber [2, 3] and identify their (combinatorial)
Hodge polygon for the above hypergeometric sums coincides with the irregular Hodge polygon
of hypergeometric connections. Finally, we deduce “Newton equals to Hodge” by a criterion for
ordinariness due to Wan [39].

Remark 1.1.2. (i) One may also consider the Frobenius Newton polygon of hypergeometric
sums defined by multiplicative characters of orders dividing ps − 1 for a positive integer s. In this
case, Adolphson–Sperber showed that the associated Frobenius Newton polygon lies above their
(combinatorial) Hodge polygon, which can be viewed as an average of irregular Hodge polygons.
However, the associated hypergeometric sums may not be ordinary in the case s > 1. There is
an example of hypergeometric sums (of type (n,m) = (2, 0)), for which the Frobenius Newton
polygon lies strictly above Adolphson–Sperber’s Hodge polygon for every a ∈ |Gm,Fp

| [1].
(ii) The ordinariness of hypergeometric sums also fails in the non-confluent case (i.e., n = m).

For p = 31, and the hypergeometric sum defined by α = (0, 0, 0, 0), β = ( 1
5 ,

2
5 ,

3
5 ,

4
5 ) at a = 4

or 17, its Newton polygon (with slope ( 5
2 ,

5
2 ,

9
2 ,

9
2 )) [13, Appendix A.5]2 strictly lies above the

irregular Hodge polygon (with slope (2, 3, 4, 5)).

1.2 Strategy of proof
The proof of Theorem 1.0.1 can be reduced to calculating the irregular Hodge filtration on each

fiber of Hypλ(α, β). We adopt an approach similar to those used in [18, 35, 30], where the authors
calculated the Hodge numbers of motives attached to Kloosterman and Airy moments. The
key ingredient of this argument is an (exponentially) geometric interpretation of hypergeometric
connections in Proposition 2.3.1.(2). More precisely, there exists a smooth quasi-projective
variety X with a regular function g : X × S → A1, such that the hypergeometric connections
are subquotients of the DS-module HN pr+(OX×S ,d + dg), where N = dimX and pr is the
projection pr : X × S → S. Our construction is motivated by Katz’s hypergeometric sums and
the function-sheaf dictionary. A related construction can be found in [22].

Through this geometric interpretation, each fiber Hypλ(α, β)a at a ∈ S(C) is identified with
a subquotient of the twisted de Rham cohomology of the pair (X, ga := g |pr−1

z (a)), i.e., the
hypercohomology of the twisted de Rham complex (Ω•

X ,d + dga). Then, we reduce to calculate
the irregular Hodge filtration on the twisted de Rham cohomology of the pair (X, ga) (up to a
shift).

The irregular Hodge filtration on the twisted de Rham cohomology of the pairs (X, ga) has
been studied by Yu [42]. In the context of our case, we can select X = Gn+m−1

m and ga as a
Laurent polynomial with good properties, see Proposition 2.3.1. Under these assumptions, Yu
showed that the irregular Hodge filtration on Hn+m−1

dR (X, ga) can be calculated by the Newton
polyhedron filtration on the Newton polytope ∆(ga) (3.1.0.4). This identification enables us to
calculate via a combinatorial approach, leading to a fiber-wise version of Theorem 1.0.1 as follows:

Theorem 1.2.1 (3.3.3). Up to an R-shift, the jumps of the irregular Hodge filtration F •
irr

on the fiber Hyp(α;β)a occur at θ(k) from (1.0.1.1) for 1 ≤ k ≤ n. Moreover, we have
dim grp

Firr
Hyp(α;β)a = #θ−1(p) for any p ∈ R.

2In loc. cit, the Frobenius slopes are normalized and are different from our convention by a shift of 2.
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Moreover, our calculation allows us to answer a question of Katz [23, 6.3.8] on the comparison
between modified hypergeometric D-modules and hypergeometric connections in the resonant
case (see Proposition 2.4.6) when the parameters are rational.

1.3 Organization of this article
The article is organized as follows. We present a geometric interpretation of hypergeometric

connections in Section 2. Section 3 is devoted to the proof of Theorem 1.2.1 and Theorem 1.0.1.
In Section 4, we study hypergeometric sums defined by multiplicative characters of orders dividing
p− 1 and prove that they are ordinary (Theorem 1.1.1).

2 Hypergeometric connections
In this section, we give an (exponentially) geometrical interpretation of the hypergeometric

connections in Propositions 2.3.1 and 2.4.1. We work with varieties over C in Sections 2 and 3.

2.1 Review of hypergeometric connections following [23]
2.1.1. Hypergeometric connections. Let n ≥ m be two integers ≥ 0, α = (α1, . . . , αn) and
β = (β1, . . . , βj) two sequences of non-decreasing rational numbers (and we don’t require that
they lie in [0, 1) as in § 1), and λ ∈ Q. Let DS be the sheaf of differential operator on S (§ 1).
Then, the hypergeometric connection Hypλ(α;β) on S is defined by (1.0.0.1)

DS/Hypλ(α;β). (2.1.1.1)

By [23, (3.1)], one has for γ ∈ Q that

Hypλ(α;β) ⊗ (O,d + γ dz
z ) ≃ Hypλ(α+ γ;β + γ), (2.1.1.2)

where α+ γ (resp. β + γ) is the sequence consisting of αi + γ (resp. βj + γ). Furthermore, one
has for µ ∈ Q× that

[x 7→ µ · x]+Hypλ(α;β) ≃ Hypλ/µ(α;β). (2.1.1.3)

Thanks to the above relations, we can often assume that λ = 1 and α1 = 0. For simplicity, we
denote by Hyp(α;β) the connection Hyp1(α;β).

When the pair (α, β) is non-resonant, i.e., αi − βj ̸∈ Z for any i, j, Katz showed in [23,
Prop. 3.2] that Hyp(α;β) is irreducible, and only depends on α modZ and β modZ. In this case,
we may assume that α and β are two non-decreasing sequences of rational numbers in [0, 1).

2.1.2. Modified hypergeometric D-modules. Given a morphism g between smooth varieties,
for bounded complex of holonomic algebraic D-modules, following [18, App. A.1], we denote
by g+, g+, and g† the derived pullback functor, the pushforward functor, and the pushforward
with compact support functor respectively. The k-th cohomology of a complex K is denoted by
Hk(K).

Let mult : Gm × Gm → Gm be the product map. The convolution functors ⋆∗ and ⋆! on Gm

are defined, for two objects M and N of Db(DGm
) by

M ⋆∗ N := mult+(M ⊠N) and M ⋆! N := mult†M ⊠N

respectively. These convolution functors are associative and commutative. Moreover, the duality
functor D interchanges ⋆! and ⋆∗.
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Definition 2.1.3. Let α and β be two sequences of rational numbers. For ? ∈ {!, ∗}, the
convolution

Hyp(α1;∅) ⋆? · · · ⋆? Hyp(αn;∅) ⋆? Hyp(∅;β1) ⋆? · · · ⋆? Hyp(∅;βm)

is a holonomic DGm-module [23, (6.3.6)]. We denote it by Hyp(?;α;β) and call it modified
hypergeometric D-module.

The above two modified hypergeometric D-modules are generally not isomorphic to the
hypergeometric connections in general. When (α, β) is non-resonant, the natural map

Hyp(!;α;β) → Hyp(∗;α;β) (2.1.3.1)

is an isomorphism, as seen by using an argument similar to those in [23, Thm. 8.4.2(5)] and [27,
Prop. 3.3.3]. In this case, both modified hypergeometric DGm

-modules are isomorphic to the
hypergeometric connection Hyp(α;β) by [23, (5.3.1)].

2.2 The Newton polytope of a Laurent polynomial
We study the Newton polytope of a Laurent polynomial appearing in the geometric interpre-

tation of hypergeometric connections in Proposition 2.4.1.

Definition 2.2.1. Let N be a positive integer and g(z1, · · · , zN ) =
∑

τ∈ZN c(τ)zτ be a Laurent
polynomial in variables z1, . . . , zN , with zτ =

∏N
i=1 z

τi
i for τ = (τ1, · · · , τN ).

(1). The support of g is the subset Supp(g) = {τ | c(τ) ̸= 0} of ZN .

(2). The Newton polytope ∆(g) is the convex hull of the set Supp(g) ∪ {0} in RN .

(3). The Laurent polynomial g is called non-degenerate with respect to ∆(g) (or simply non-
degenerate) if for each face σ ⊂ ∆(g) not passing through 0, the Laurent polynomial
gσ :=

∑
τ∈σ∩ZN c(τ)zτ has no critical point in (C×)N .

Let n ≥ m ≥ 0 and d ≥ 1 be three integers, and f : Gn+m
m → A1 the Laurent polynomial

f : (x2, . . . , xn, y1, . . . , ym, z) 7→
n∑

i=2
xd

i −
m∑

j=1
yd

j + z ·
∏m

j=1 y
d
j∏n

i=2 x
d
i

, (2.2.1.1)

and prz : Gn+m
m → Gm the projection onto the z-coordinate. For a ∈ C×, we set fa = f |pr−1

z (a).
We denote by {ui, vj}2≤i≤n,1≤j≤m the coordinates in Rn+m−1, and identify a monomial∏

i x
ai
i ·
∏

j y
bj

j with a lattice point (ai, bj) ∈ Zn+m−1 ⊂ Rn+m−1.

Lemma 2.2.2. Assume that n > m = 0 and a ∈ C×.

(1). The Laurent polynomial fa is convenient, i.e., the origin is in the interior of ∆(fa).

(2). The Newton polytope ∆(fa) is defined by

hn+1 :=
n∑

i=2
ui ≤ d and hi0 :=

n∑
i=2

ui − (n−m)ui0 ≤ d, 2 ≤ i0 ≤ n. (2.2.2.1)

(3). The Laurent polynomial fa is non-degenerate with respect to ∆(fa).
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Proof. (1) Let Pi for 2 ≤ i ≤ n, and R be the points in Zn−1 corresponding to xd
i and 1/

∏
xd

i

respectively. Observe that 0 is an interior point of the Newton polytope because 0 = 1
n (
∑
Pi +R).

(2) A face σ ⊂ ∆(fa) of dimension n− 2 must pass through n− 1 points among {Pi, R}. So
either R ̸∈ σ or there exists a Pi0 ̸∈ σ. In the first case, the face lies on the hyperplane defined by
the equation hn+1 = d. In the latter case, the face lies on the hyperplane defined by the equations
hi0 = d.

(3) Let σ be a face which does not pass through 0. Since the support of fa has n points, it
must pass through at most n− 1 points in Supp(fa). Let I ⊂ {2, . . . , n} be a subset of the indices.
Then fa,σ is either

fa,σ =
∑
i∈I

xd
i , or fa,σ =

∑
i∈I

xd
i + a∏n

i=2 x
d
i

, |I| ≤ n− 2.

We can check that they are smooth on Gn−1
m . So fa is non-degenerate.

Lemma 2.2.3. Assume that n > m ̸= 0 and a ∈ C×.

(1). The cone R≥0 · ∆(fa) is defined by

ui + vj ≥ 0, vj ≥ 0

for i = 2, . . . , n and j = 1, . . . ,m,

(2). The Newton polytope ∆(fa) is defined by

ui + vj ≥ 0, vj ≥ 0, hn+1 :=
∑

ui +
∑

vj ≤ d

and
hi0 :=

∑
i

ui +
∑

j

vj − (n−m)ui0 ≤ d, 2 ≤ i0 ≤ n. (2.2.3.1)

(3). The Laurent polynomial fa is non-degenerate with respect to ∆(fa) 3.

Proof. Let Pi and Qj be the points in Zn+m−1 corresponding to monomials xd
i and yd

j for 2 ≤ i ≤ n

and 1 ≤ j ≤ m respectively, and R the lattice point corresponding to
∏m

j=1 y
d
j /
∏n

i=2 x
d
i . In this

case, the origin 0 is not an interior point of the Newton polytope. So ∆(fa) has (n+m+ 1)-many
vertices. To determine a face of dimension n+m− 2, we need to choose (n+m− 1)-many points
among {Pi, Qj , R}.

(1) For the first part, it suffices to determine faces σ ⊂ ∆(fa) with dimensions n + m − 2
containing 0.

• If σ does not pass through R, it contain (n + m − 2) distinct points in {Pi, Qj}. In this
case, σ misses one point Qj0 , and lies on the hyperplane vj0 = 0. Otherwise, σ misses one
point Pi0 . Hence, the hyperplane is given by the equation ui0 = 0. Therefore, R and Pi0 lie
on the two sides of the hyperplane respectively, which is absurd.

• If σ passes through R, it contains (n+m− 3) distinct points in {Pi, Qj}. In this case, σ has
to miss one Pi0 and one Qj0 , and lies on the hyperplane ui0 + vj0 = 0. Otherwise, σ misses
two Pi0 , Pi′

0
or Qj0 , Qj′

0
. So σ lies on the hyperplane ui0 −ui′

0
= 0 or vj0 −vj′

0
= 0. However,

the points Pi0 , Pi′
0

or Qj0 , Qj′
0

lie be on different sides of the hyperplane ui0 − ui′
0

= 0 or
vj0 − vj′

0
= 0, which contradicts the definition of σ.

3In [5, Lem. 3.6], there is an alternative way of proving that fa is non-degenerate in this setting.
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(2) For the second part, it suffices to determine faces of dimension n+m− 2 that do not pass
through the origin.

• If R ̸∈ σ, then σ contains all points Pi and Qj . In this case, σ lies on the hyperplane∑
ui +

∑
vj = d.

• If R ∈ σ, then σ contains n+m− 2 points among {Pi, Qj}. In this case, σ misses one Pi0 ,
and lies on the hyperplane hi0 = d. Otherwise, it misses one Qj0 and lies on the hyperplane∑n

i=2 ui +
∑m

j=1 vj + (n−m)vj0 = d. However, the points 0 and Qj0 are on different sides
of the hyperplane.

P3

Q1

P2

R

O

(3) Let σ be a face which does not pass through 0. Since the support of fa has n+m points, it
must pass through at most n+m− 1 points in Supp(fa). Let I ⊂ {2, . . . , n} and J ⊂ {1, . . . ,m}
be two subsets of the indices. Then fa,σ is either

fa,σ =
∑
i∈I

xd
i −

∑
j∈J

yd
j , or fa,σ =

∑
i∈I

xd
i −

∑
j∈J

yd
j +

a
∏
yd

j∏
xd

i

, for |I| + |J | ≤ n+m− 2.

We can check that they are smooth on Gn+m−1
m . So fa is non-degenerate.

Lemma 2.2.4. Assume that n = m and a ∈ C×.
(1). The cone R≥0 · ∆(fa) is defined by

ui + vj ≥ 0, vj ≥ 0

for i = 2, . . . , n and j = 1, . . . ,m,

(2). The Newton polytope ∆(fa) is defined by

ui + vj ≥ 0, vj ≥ 0, and hn+1 :=
∑

ui +
∑

vj ≤ d. (2.2.4.1)

(3). The Laurent polynomial fa is non-degenerate with respect to ∆(fa) if a ̸= 1.
Proof. We use the same notation as in Lemma 2.2.3. The proof of the first assertion is the
same as that in Lemma 2.2.3. The second assertion follows from the observation that the points
{Pi, Qj , R} all lie on the hyperplane

∑
ui +

∑
vj − d = 0.

Let σ be the face passing through {Pi, Qj , R}. If a face τ of ∆(fa) does not contain 0, it is a
face of σ. One can check that if τ is a proper face of σ, there is no solution for the system of
equations

fa,τ = ∂xi
fa,τ = ∂yj

fa,τ = 0.
If τ = σ, the system of equations

fa = ∂xi
fa = ∂yj

fa = 0

has solutions in Gn+m−1
m if and only if a = 1. So fa is non-degenerate with respect to ∆(fa) if

a ̸= 1.
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Remark 2.2.5. The volume of ∆(fa) is dn+m−1n
(n+m−1)! . In fact, the Newton polytope can be

decomposed into n-copies n+m− 1-simplexes, and each of them has volume dn+m−1

(n+m−1)! .

2.3 Geometric interpretations
We present geometric interpretations of hypergeometric connections here. Let d be a common

denominator of αi and βj , and set ai = d · αi and bj = d · βj . To αi (resp. βj), we associate the
character χi : µd → C× (resp. ρj) which sends ζd to ζai

d (resp. ζbj

d ). Set

χ× ρ = χ1 × . . .× χn × ρ−1
1 × . . .× ρ−1

m , χ̃× ρ = χ2 × . . .× χn × ρ−1
1 × . . .× ρ−1

m (2.3.0.1)

as products of these characters.
Now we introduce two diagrams as follows:

• Let Gn+m
m be the torus with coordinates xi, yj for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The group

µn+m
d acts on Gn+m

m by multiplication. We consider the diagram

Gn+m
m

A1 Gm

σ ϖ (2.3.0.2)

where σ(xi, yj) =
∑n

i=1 x
d
i −

∑m
j=1 y

d
j , and ϖ(xi, yj) =

∏n
i=1 x

d
i /
∏m

j=1 y
d
j .

• Let Gn+m
m be the torus with coordinates z, xi, yj for 2 ≤ i ≤ n and 1 ≤ j ≤ m, and S be

Gm (resp. Gm\{1}) if n ̸= m (resp. n = m). The group G = µn+m−1
d acts on coordinates

xi’s and yj ’s by multiplication. We consider the diagram

Gn+m
m U := S × Gn+m−1

m

A1 Gm S

f prz prz (2.3.0.3)

where prz is the projection on the z-coordinate and f is the Laurent polynomial
n∑

i=2
xd

i −
m∑

j=1
yd

j + z ·
∏m

j=1 y
d
j∏n

i=2 x
d
i

,

defined in (2.2.1.1).

Let Ez = (O, d + dz) be the exponential D-module on A1
z. For a regular function f : X → A1

z,
we denote by Ef the connection (OX ,d + df) on X.

Proposition 2.3.1. Let α and β be as above.

(1). The complex ϖ?Eσ is concentrated in degree 0 for ? ∈ {†,+}, and we have isomorphisms of
D-modules

Hyp(∗;α;β) ≃ (ϖ+Eσ)(µn+m
d

,χ×ρ) and Hyp(!;α;β) ≃ (ϖ†Eσ)(µn+m
d

,χ×ρ),

where the exponent (µn+m
d , χ× ρ) means taking the χ× ρ-isotypic component with respect

to the action of µn+m
d .
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(2). If α1 = 0, we have

Hyp(∗;α;β) ≃ (H0prz+Ef )(G,χ̃×ρ) and Hyp(!;α;β) ≃ (H0prz†Ef )(G,χ̃×ρ).

Proof. The case of Hyp(!;α;β) can be deduced from the case of Hyp(∗;α;β) by applying the
duality functor. So, we only prove the latter case.

(1) Assume that (n,m) = (1, 0). Then σ : Gm,x1 → A1 is the map x1 7→ xd
1 and ϖ : Gm,x1 →

Gm,z is the d-th power map. So by the identity ϖ+OGm
=
⊕d−1

i=0
(
OGm

,d + i
d

dz
z

)
and the

projection formula, we have

(ϖ+Eσ) = Ez ⊗ (ϖ+OGm
) =

d−1⊕
i=0

Ez ⊗
(
OGm

,d + i
d

dz
z

)
,

which is concentrated in degree 0. Taking the isotypic component, we have

(ϖ+Eσ)(µn+m
d

,χ×ρ) = (ϖ+Exd
1 )(µd,χ1) = Ez ⊗ (ϖ+OGm

)(µd,χ1)

= (OGm
,d + dz + α1

dz
z ) = Hyp(∗;α1;∅)

in the case where (n,m) = (1, 0). The proof of the case where (n,m) = (0, 1) is similar. In
general, we use the induction on n+m. The proof follows from the following lemma.

Lemma 2.3.2. Let α, α, β and β′ be four sequences of rational numbers with common denominator
d, whose lengths are n, n′,m and m′ respectively. We denote by χi, χ

′
i, ρj , ρ

′
j characters of µd

corresponding to αi, α
′
i, βj , β

′
j respectively. Let σ, and ϖ (resp. σ′ and φ′) be the maps for (n,m)

(resp. (n′,m′)) in the diagram (2.3.0.2).
Suppose that (ϖ+Eσ) and (ϖ′

+Eσ′) are concentrated in degree 0, and there are isomorphisms
of D-modules

Hyp(∗;α;β) ≃ (ϖ+Eσ)(µn+m
d

,χ×ρ) and Hyp(∗;α′;β′) ≃ (ϖ+Eσ′
)(µn+m

d
,χ′×ρ′).

Then ((ϖ ·ϖ′)+Eσ⊞σ′) is also concentrated in degree 0, and we have an isomorphism of D-modules

Hyp(∗;α, α′;β, β′) ≃ ((ϖ ·ϖ′)+Eσ⊞σ)(µn+n′+m+m′
d

,χ×χ′×ρ×ρ′)

where ϖ ·ϖ′ = mult ◦ (ϖ ×ϖ′), pr and pr′ are the projections from Gn+n′+m+m′

m to Gn+m
m and

Gn′+m′

m respectively, and σ ⊞ σ′ = σ ◦ pr + σ′ ◦ pr′ is the Thom-Sebastiani sum.

Proof of Lemma 2.3.2. This proof of this lemma is essentially that of [23, Lem. 5.4.3]. Notice
that the exterior product Eσ ⊠ Eσ′ is Eσ⊞σ′ . Then

(ϖ+Eσ) ⋆∗ (ϖ′
+Eσ′

) = mult+((ϖ+Eσ) ⊠ (ϖ′
+Eσ′

))
= mult+(ϖ ×ϖ′)+(Eσ ⊠ Eσ′

) = (ϖ ·ϖ′)+Eσ⊞σ′
.

By Künneth formula [20, Prop. 1.5.28(i) and Prop. 1.5.30], we conclude that (ϖ · ϖ′)+Eσ⊞σ′

is again concentrated in degree 0. We finish the proof by taking the corresponding isotypic
components.

(2) Since α1 = 0, the character χ1 is trivial. So we have

(ϖ+Eσ)(µn+m
d

,χ×ρ) =
((

x1 ·
n∏

i=2
xd

i /

m∏
j=1

yd
j

)
+

Ex1+
∑m

i=2
xd

i −
∑

j
yd

j

)(1×G,1×χ̃×ρ)

= (prz+Ef )(G,χ̃×ρ),

(2.3.2.1)

9



where we performed a change of variable z = x1 ·
∏n

i=2 x
d
i /
∏m

j=1 y
d
j to get rid of the variable x1

in the last isomorphism. Because (ϖ+Eσ) is concentrated in degree 0, so is (prz+Ef )(G,χ̃×ρ).

Corollary 2.3.3. Assume that (α, β) is non-resonant and α1 = 0. Then, the natural map

(H0prz†Ef )(G,χ̃×ρ) → (H0prz+Ef )(G,χ̃×ρ)

is an isomorphism of DGm-modules. In particular, for a ∈ S(C), the forget-support map

Hn+m−1
dR,c (Gn+m−1

m , fa) → Hn+m−1
dR (Gn+m−1

m , fa)

is an isomorphism.

Proof. Using induction on the size of α and β, one can verify that the diagram

Hyp(!;α;β) Hyp(∗;α;β)

(H0ϖ†Eσ)(µn+m
d

,χ×ρ) (H0ϖ+Eσ)(µn+m
d

,χ×ρ)|S

(H0prz†Ef )(G,χ̃×ρ) (H0prz+Ef )(G,χ̃×ρ)

≃

≃ ≃

≃ ≃

is commutative, where the horizontal morphisms are the natural morphisms, the two upper
vertical morphisms are those from Proposition 2.3.1.(1), and the two lower vertical morphisms
are (2.3.2.1). So, we deduce the isomorphism

(H0prz†Ef )(G,χ̃×ρ) → (H0prz+Ef )(G,χ̃×ρ).

At last, we take the non-characteristic inverse image along a : Spec(C) → Gm, and the base
change theorem [20, Thm. 1.7.3 & Prop. 1.5.28] to conclude the isomorphism of twisted de Rham
cohomologies.

Remark 2.3.4. When (α, β) is non-resonant and α1 = 0, we deduce from Proposition 2.3.1 the
isomorphism

[z 7→ (−1)n−mz]+Hyp(α, β) ≃ (H0prz+E−f )(G,χ̃×ρ),

by performing a change of variable by sending xi and yj to −xi and −yj respectively in the
diagram (2.3.0.3). According to (2.1.1.3), the first term in the above is Hyp(−1)n−m(α;β). In
particular, the results in Corollary 2.3.3 remain valid if we replace f with −f .

2.4 Explicit cyclic vectors for hypergeometric connections
We present explicit cyclic vectors for Hyp(α;β) in terms of sections of some subquotients of

some relative de Rham cohomology equipped with their Gauss–Manin connections. This point of
view will be used in the computation of Hodge filtrations in Section 3.

Recall that d is an integer such that ai = dαi and bj = dβj are integers for all i, j, and we
take notation from (2.3.0.3). When (α, β) is non-resonant and α1 = 0, there exists an isomor-
phism between the hypergeometric connection Hyp(α;β) and the relative de Rham cohomology
Hn+m−1

dR (U/S, f)(G,χ̃×ρ) equipped with the Gauss–Manin connection by Proposition 2.3.1.
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Proposition 2.4.1. Suppose that α1 = 0 and (α, β) is non-resonant. The relative de Rham
cohomology Hn+m−1

dR (U/S, f)(G,χ̃×ρ) admits a cyclic vector, defined by the cohomology class of
the differential form

ω =
n∏

i=2
xai

i ·
m∏

j=1
y

−bj

j

dx2

x2
· · · dxn

xn

dy1

y1
· · · dym

ym
.

Remark 2.4.2. Under the above assumption, the isomorphism class of Hyp(α;β) depends only
on the congruent classes of α, β modulo Z. Then, any differential form

ω =
n∏

i=2
xui

i ·
m∏

j=1
y

−vj

j

dx2

x2
· · · dxn

xn

dy1

y1
· · · dym

ym
,

satisfying ui ≡ ai, vj ≡ bj modulo d, is a cyclic vector of Hn+m−1
dR (U/S, f)(G,χ̃×ρ).

Proof. The morphism prz : U → S is smooth (2.3.0.3). It follows that the relative de Rham
cohomologies Hi

dR(U/S, f) are equipped with the Gauss-Manin connections D := ∇z∂z , given by

∇z∂z
ω = z∂zω + z∂z(f)ω (2.4.2.1)

for 0 ≤ i ≤ n+m− 1. By Lemmas 2.2.2, 2.2.3, and 2.2.4, the Laurent polynomial fa := f |pr−1
z (a)

is non-degenerate for each a ∈ S(C). By [4, Thm. 1.4 and Thm. 4.1], the cohomology group
Hi

dR(U/S, fa) vanishes if i ̸= n+m− 1.
Now we consider the (G, χ̃× ρ)-isotypic component of the connection Hn+m−1

dR (U/S, f), which
can be identified with (H0prz+Ef )(G,χ̃×ρ). It remains to prove that the cohomology class defined
by the differential form

ω =
n∏

i=2
xai

i ·
m∏

j=1
y

−bj

j

dx2

x2
· · · dxn

xn

dy1

y1
· · · dym

ym

is a cyclic vector for Hn+m−1
dR (U/S, f)(G,χ̃×ρ).

Lemma 2.4.3. Let t2, · · · , tn, s1, · · · , sm be integers and set

ω̃ :=
n∏

i=2
xti

i ·
m∏

j=1
y

sj

j

dx2

x2
· · · dxn

xn

dy1

y1
· · · dym

ym

as a class in Hn+m−1
dR (U/S, f). For each i and j such that 2 ≤ i ≤ n and 1 ≤ j ≤ m respectively,

we have
(D − ti/d)ω̃ = xd

i · ω̃ and (D + sj/d)ω̃ = yd
j · ω̃.

Proof. We prove the identity for (D− t2)ω̃. And the proofs for the rest are identical. By (2.4.2.1),

we have D ω̃ =
z·
∏

j
yd

j∏
i

xd
i

ω̃. Then, by the definition of the relative twisted de Rham cohomology

0 = ∇U/S

(
n∏

i=2
xti

i ·
∏

y
sj

j

dx3

x3
· · · dxn

xn

dy1

y1
· · · dym

ym

)
= t2 · ω̃ + x2 · ∂x2f · ω̃

= t2 · ω̃ + x2 ·
(
dxd−1

2 − dx−1
2
z
∏
yd

j∏
xd

i

)
ω̃ = d(xd

2 − (D − t2/d)) ω̃.

This is exactly what we want to prove.
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We show that ω satisfies the hypergeometric differential equation Hyp(α;β). By Lemma 2.4.3,
we have

n∏
i=2

(D − αi)ω =
n∏

i=2
xd

i · ω and
m∏

j=1
(D − βj)ω =

m∏
j=1

yd
j · ω.

Then, we deduce from (2.4.2.1) that
n∏

i=1
(D − αi)ω = D

( n∏
i=2

xd
i · ω

)
= z

m∏
j=1

yd
j · ω = z

m∏
j=1

(D − βj)ω.

Using Lemma 2.4.3, we deduce that ω ̸= 0. So we get a nonzero morphism

DS/Hyp(α;β) →
n−1⊕
i=0

OGm ·Diω ⊂ Hn+m−1
dR (U/S, f)G,χ̃×ρ (2.4.3.1)

defined by sending 1 to ω. Since the left-hand side is irreducible, and both sides have the same
ranks, the above morphism is an isomorphism. By Proposition 2.3.1, ω is a cyclic vector of
Hyp(α;β) ≃ Hn+m−1

dR (U/S, f)G,χ̃×ρ.

Remark 2.4.4. If we replace Ef by (Gm, d − df) = (Gm, d + df)∨, the direct sum
⊕n−1

i=0 ODiω
is the (G, χ̃× ρ)-isotypic component of Hn+m−1

dR (Gn+m
m /Gm,−f), isomorphic to the connection

Hyp(−1)n−m(α;β). To see this, it suffices to notice that the corresponding identities in Lemma 2.4.3
become

(D − ti/d)ωt,s = −xd
iωt,s and (D + sj/d)ωt,s = −yd

jωt,s

in this case. The rest of the proof relies on the above calculation and Remark 2.3.4.

2.4.5. Resonant case. When (α, β) is resonant, the modified hypergeometric D-module
Hyp(∗;α;β) depends only on the classes of α and β modulo Z. In [23, 6.3.8], Katz asked whether
Hyp(∗;α;β) is isomorphic to the connection Hyp

(
(αi +ri); (βj +sj)

)
(2.1.1.1) for suitable integers

ri, sj ∈ Z. We provide a positive answer to this question in the following proposition.

Proposition 2.4.6. When (α, β) is resonant, there exists a positive integer h depending on
α modZ and β modZ, such that for any integers r, s > h, the modified hypergeometric D-module
Hyp(∗;α;β)|S is isomorphic to the hypergeometric connection Hyp

(
(α1, α2 −r, . . . , αn −r);β+s

)
.

Proof. We may assume that α1 = 0. Let ω̃1, . . . , ω̃n be a representative of a basis of the connection
Hn+m−1

dR (U/S, f)G,χ̃×ρ. More precisely, we can write

ω̃k =
∑

e∈Zn−1,f∈Zm

ϵk,e,f

n∏
i=2

xai+d·ei
i

m∏
j=1

y
−bj+d·fj

j

dx2

x2
· · · dxn

xn

dy1

y1
· · · dym

ym
,

where only finitely many ϵk,e,f are non-zero. We equip Zn+m−1 with the partial order defined
by the relation that a ≥ b if a − b ∈ Nn+m−1. Let (e0, f0) be a maximal element in the set
{(e′, f ′) | (e′, f ′) ≤ (e, f) if ϵk,e,f ≠ 0}. Then we take h to be the the maximal value among
{|(e0)|i, |(f0)|j}.

For any r, s > h, as in Proposition 2.4.1, we define a morphism of D-modules:

DS/Hyp(0, α2 − r, . . . , αn − r;β + s) →
n−1⊕
i=0

OGm
·Diω ⊂ Hn+m−1

dR (U/S, f)G,χ̃×ρ (2.4.6.1)
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by sending 1 to

ω =
n∏

i=2
xai−d·r

i ·
m∏

j=1
y

−bj−d·s
j

dx2

x2
· · · dxn

xn

dy1

y1
· · · dym

ym
.

Since for all (e, f) with ϵk,e,f ̸= 0, we have ai +d · ei ≥ ai −d · ri and bj +d ·fj ≥ bj −d · sj for any
i and j, we deduce that the class defined by

∏n
i=2 x

ai+d·ei
i

∏m
j=1 y

−bj+d·fj

j
dx2
x2

· · · dxn

xn

dy1
y1

· · · dym

ym

lies in the image of (2.4.6.1) by Lemma 2.4.3. This morphism is surjective and, therefore, an
isomorphism.

3 Irregular Hodge filtration of hypergeometric connections
This section aims to calculate the (irregular) Hodge filtrations of hypergeometric connections

(see Theorem 3.3.3 and Theorem 3.3.1).
In this section, let n ≥ m ≥ 0 be two integers, α = (α1, . . . , αn) and β = (β1, . . . , βj) two

sequences of non-decreasing rational numbers in [0, 1).

3.1 Exponential mixed Hodge structures
To explain certain duality on the irregular Hodge filtration of hypergeometric connections, we

use the language of exponential mixed Hodge structures introduced by Kontsevich-Soibelman
[24]. We recall the basic definitions of exponential mixed Hodge structures from [18, Appx.].

Let X be a smooth algebraic variety and K a number field. We denote by MHM(X,K)
the abelian category of mixed Hodge modules on X with coefficients in K. In particular, when
X = Spec(C), the category MHM(X,K) is equivalent to the category of mixedK-Hodge structures.
Moreover, the bounded derived categories Db(MHM(X,K)) admit the six functor formalism. For
more details about mixed Hodge modules, see [36].

Let π : A1 → Spec(C) be the structure morphism. The category EMHS(K) of exponential
mixed Hodge structures with coefficients in K is defined as the full subcategory of MHM(A1,K),
whose objects NH have vanishing cohomology on A1, i.e., satisfying π∗N

H = 0.
There is an exact functor Π: MHM(A1,K) → MHM(A1,K) defined by

NH 7→ s∗(NH ⊠ j!OH
Gm

) (3.1.0.1)

where j : Gm,C → A1 is the inclusion and s : A1 × A1 → A1 is the summation map. The functor
Π is a projector onto EMHS(K), i.e. it factors through EMHS(K) with essential image EMHS(K).
Using this functor, the dual of an object M in EMHS(K) is defined by Π([t 7→ −t]∗D(M)), where
t is the coordinate of A1.

For each object Π(NH) of the category EMHS(K), there exists a weight filtration WEMHS
• on

Π(NH), defined by the weight filtration on NH: WEMHS
n Π(NH) := Π(WnN

H). We will drop the
superscript for simplicity.

The de Rham fiber functor from EMHS(K) to VectC is defined by

Π(NH) 7→ H1
dR(A1,Π(N) ⊗ Et), (3.1.0.2)

where Π(N) is the underlying D-module of Π(NH) and Et denotes the exponential D-module
(OA1 ,d + dt).

The de Rham fiber functor is faithful and one can associate an irregular Hodge filtration F •
irr

on the de Rham fibers of objects in EMHS(K) by [31, §6.b], compatible with the definitions in
[15, 31, 33].
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3.1.1 Objects of EMHS attached to regular functions

Let X be a smooth affine variety of dimension n and K a number field. We denote by KH
X

the trivial Hodge module on X with coefficients in K. For a regular function g : X → A1 and an
integer r, we consider the following exponential mixed Hodge structures

Hr(X, g) := Π(Hr−ng∗K
H
X), Hr

c(X, g) := Π(Hr−ng!K
H
X).

The exponential mixed Hodge structures Hr(X, g), Hr
c(X, g) are mixed of weights at least r and

mixed of weights at most r respectively by [18, A.19].
The de Rham fiber of Hr

?(X, g) is isomorphic to Hr
dR,?(X, g), and the irregular Hodge filtration

on the de Rham fibers are identified with those on twisted de Rham cohomologies [42].

3.1.2 Irregular Hodge filtration and Newton monomial filtration

We briefly recall the definition of the irregular Hodge filtration on the twisted de Rham
cohomology following [42]. Let X and g be as above, j : X → X̄ a smooth compactification of X,
and D := X̄\X the boundary divisor. The pair (X̄,D) is called a good compactification of the
pair (X, g) if D is normal crossing and g extends to a morphism ḡ : X̄ → P1.

Let P be the pole divisor of g. The twisted de Rham complex (Ω•
X̄

(∗D),∇ = d + dg) admits a
decreasing filtration Fλ(∇) := F 0(λ)≥⌈λ⌉, indexed by non-negative real numbers λ, where F 0(λ)
is the Yu complex

OX̄(⌊−λP ⌋) ∇−→ Ω1
X̄

(logD)(⌊(1 − λ)P ⌋) → · · · → Ωp

X̄
(logD)(⌊(p− λ)P ⌋) → · · · .

The irregular Hodge filtration on the de Rham cohomology H1
dR(X, g) is defined by

Fλ
irrHi

dR(X, g) := im(Hi(X̄, Fλ(∇)) → Hi
dR(X, g)), (3.1.0.3)

which is independent of the choice of the good compactification (X̄,D) [42, Thm. 1.7].
When X is isomorphic to a torus Gn

m, the regular function g on X is a Laurent polynomial
of the form

∑
P =(p1,...,pn) c(P )xP . We refine the normal fan of the Newton polytope ∆(g) to

make the associated toric variety Xtor smooth proper. Although (Xtor, Dtor = Xtor\X) is not
a good compactification for the pair (X, g) in general, we can still define Fλ

NP(∇) and the
Newton polyhedron filtration Fλ

NPH1
dR(U,∇) similarly to that in (3.1.0.3) by replacing the good

compactification (X̄,D) with (Xtor, Dtor),
When g is non-degenerate with respect to ∆(g), the only non-vanishing twisted de Rham

cohomology group of the pair (X, g) is the middle cohomology group Hn
dR(X, g) by [4, Thm 1.4],

and the irregular Hodge filtration F •
irr agrees with the Newton polyhedron filtration F •

NP on
Hn

dR(X, g) [42, Thm. 4.6]. In particular, we have

Hi(Xtor, F
λ
NP(∇)) = Hi(Γ(Xtor, F

λ
NP(∇))),

which allows us to compute the irregular Hodge filtration by knowledge of ∆(g).
Now, we present an explicit way to calculate the Newton polyhedron filtration. For a

cohomology class ω = xQ dx1
x1

∧ · · · ∧ dxn

xn
such that the lattice point Q = (q1, . . . , qn) lies in

R≥0∆(g), we define w(Q) to be the weight of Q in the sense of [4], i.e. the minimal positive real
number w such that Q ∈ w · ∆(g). The associated cohomology class of ω lies in Fλ

NPHn
dR(X, g) if

ω ∈ Γ(Xtor,Ωn
Xtor

(logDtor)(⌊(n− λ)P ⌋)).
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Notice that each ray ρ in the normal fan of ∆(g) corresponds to an irreducible component Pρ of
P . Let vρ be a primitive vector of the ray ρ. Then, the multiplicity of ω along Pρ is given by
< Q, vρ > [19, p. 61]. Taking the multiplicities of Pρ in P into account, we have

xQ dx1

x1
∧ · · · ∧ dxn

xn
∈ F

n−w(Q)
NP Hn

dR(X, g). (3.1.0.4)

as remarked in [42, p. 126 footnote].

3.1.3 The EMHS associated with hypergeometric connections

In this subsection, we assume α1 = 0 and let χ̃× ρ be the product of characters associated
with αi and βj in (2.3.0.1).

Definition 3.1.1. Let K be the number field Q(ζai

d , ζ
bj

d ) and a ∈ S(C). For ? ∈ {∅, c}, we define

E?(a;α;β) := Hn+m−1(Gn+m−1
m , fa)(G,χ̃×ρ)

as exponential mixed Hodge structures with coefficients in K in the sense of (3.1.1).

By Proposition 2.3.1 and the base change theorem, the de Rham fiber of E(a;α;β) is isomorphic
to the fiber of Hypλ(α;β) at a · λ ∈ S(C), for λ ∈ Q×.

Let t be the largest natural number such that αt = 0. We let ᾱ and β̄ be the sequences of
rational numbers defined by

ᾱi =
{

0 1 ≤ k ≤ t,

1 − αn+t+1−k t+ 1 ≤ k ≤ n,
and β̄k = 1 − βk. (3.1.1.1)

Proposition 3.1.2. (1). The dual of the exponential mixed Hodge structure Ec(a;α;β) is iso-
morphic to E((−1)n−ma; ᾱ; β̄).

(2). When (α, β) is non-resonant, the exponential mixed Hodge structures E?(a;α;β) for ? ∈
{∅, c} are all isomorphic. In particular, they are pure of weight n+m− 1.

Proof. (1) The EMHS Hn+m−1
c (Gn+m−1

m , fa) is dual to Hn+m−1(Gn+m−1
m ,−fa), which is also

isomorphic to Hn+m−1(Gn+m−1
m , f(−1)n−ma). We deduce the first assertion by taking their

corresponding isotypic components.
(2) Since the de Rham fiber functor is faithful, the forget support morphism

Ec(a;α;β) → E(a;α;β)

is an isomorphism by Corollary 2.3.3. Hence, the exponential mixed Hodge structures Ec(a;α;β)
and E(a;α;β) are isomorphic, and are pure of weight n+m− 1.

Remark 3.1.3. We can define confluent hypergeometric motives as exponential motives in the
sense of [17], such that the exponential mixed Hodge structures E(1;α;β) and the hypergeometric
connections Hyp(α, β) are their Hodge realizations and D-module realizations respectively.

More precisely, assume n > m and let ζn−m be an (n−m)-th primitive root of unity. The
group µn+m−1

d acts on Gn+m−1
m,(xi,yj) × Gm,t as before on the coordinates (xi, yj), and the group

µn−m acts on the coordinates (xi, yj , t) by

ζn−m · (xi, yj , t) = (ζ−1
n−mxi, ζ

−1
n−myj , ζn−mt).
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Then we define the confluent hypergeometric motives as

Hn+m−1(Gn+m−1
m , f1)(µn+m−1

d
×µn−m,χ̃×ρ×1),

which is a priori defined over K(ζn−m) with coefficients in K.
Here, the field of definition K(ζn−m) is not optimal. For example, using an argument similar to

that in [29, Rem. 3.3] and the Galois descent [17, Thm. 5.2.4], one can show that these motives are
defined over K. If L is a subfield of K such that Gal(C/L) preserves both the sets {exp(2πiαi)}
and {exp(2πiβj)}, then these motives can further descend to L (see also [5, Thm. 1.1] for a related
discussion).

3.2 A basis in relative twisted de Rham cohomology
In this subsection, we assume α1 = 0. We define positive integers s1, . . . , sm+1 by

sr =


1 r = 0
#{i : αi < βr} 1 ≤ r ≤ m

n+ 1 r = m+ 1

and for r and ℓ such that 0 ≤ r ≤ m and 1 ≤ ℓ ≤ sr+1 − sr , we set

gr,ℓ = xa2
2 · · ·xasr+ℓ−1

sr+ℓ−1 · xasr+ℓ−d
sr+ℓ · · ·xan−d

n · yd−b1
1 · · · yd−br

r · y2d−br+1
r+1 · · · y2d−bm

m ,

Let η = dx2
x2

· · · dxn

xn

dy1
y1

· · · dym

ym
and ωr,ℓ = gr,ℓ · η be the corresponding differential forms in

Hn+m−1
dR (U/S,±f)(G,χ̃×ρ), where U and S are defined in (2.3.0.3).

Proposition 3.2.1. If (α, β) is non-resonant, the cohomology classes defined by

ωr,ℓ, 0 ≤ r ≤ m, 1 ≤ ℓ ≤ sr+1 − sr

in Hn+m−1
dR (U/S,±f)(G,χ̃×ρ) form a basis over OS.

Proof. It suffices to show that span(ωr,ℓ) = span(Diω | 0 ≤ i ≤ n− 1) for a cyclic vector ω.
To a Laurent monomial g =

∏
xui

i

∏
y

vj

j in variables {xi}n
i=2 and {yj}m

j=1, we associate a
lattice point P(g) = (u2, . . . , un, v1, . . . , vm) ∈ Zn+m−1 ⊂ Rn+m−1. If ω = g · η is the product of
a monomial g with the differential form η, we set P(ω) := P(g) for the corresponding point.

Let π1 and π2 be the projections from Rn+m−1 to Rn−1
ui

and Rm
vj

respectively. The for the
differential forms ωr,ℓ, we have

π1(P(ωr,ℓ)) = (a2, . . . , asr+ℓ−1, asr+ℓ − d, . . . , an − d)

and
π2(P(ωr,ℓ)) = (d− b1, . . . , d− br, 2d− br+1, . . . , 2d− bm).

It follows from Lemmas 2.2.2, 2.2.3, and 2.2.4 that the fibers of all ωr,ℓ at a ∈ S(C) lie in the
cone R≥0 · ∆(fa)

Let Pi and Qj be the points corresponding to monomials xd
i and yd

j respectively for 2 ≤ i ≤ n
and 1 ≤ j ≤ m.

Lemma 3.2.2. For a point P ∈ Zn+m−1 and two integers 2 ≤ i0 ≤ n and 1 ≤ j0 ≤ m, let ω0, ω1
and ω2 be the corresponding differential forms of the points P, P +Qj0 and P +Pi0 in Zn+m−1. If
the i0-th coordinate of P is different from the negative of the j0-th coordinate of P , then we have

span(ω0, ω2) = span(ω1, ω2) in Hn+m−1
dR (U/S, f)(G,χ̃×ρ).
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Proof. Let P be the point (ti, sj) ∈ Zn+m−1 and ω0 be the associated differential form. By the
assumption, we have ti ̸= −sj . Then

span(ω0, (D − ti0)ω0) = span((D − ti0)ω0, (D + sj0)ω0).

At last, notice that we have ω1 = (D + sj0)ω0 and ω2 = (D − ti0)ω0 by Lemma 2.4.3 and
Remark 2.4.4.

Step 1: If s1 − s0 = 0, we skip this step and put ω(1)
r,ℓ = ωr,ℓ for any r, ℓ. Otherwise, for r = 0

and 1 ≤ ℓ ≤ s1 − s0, we replace the differential forms ω0,ℓ by differential forms ω(1)
0,ℓ of the forms

g · η for some monomials g, such that

P(ω(1)
0,ℓ ) = P(ω0,ℓ) −Q1.

More precisely, we keep the first n− 1 coordinates of P(ω0,ℓ) unchanged and replace the last m
coordinates of P(ω0,ℓ) by that of P(ω(1)

0,ℓ ):

(d− b1, 2d− b2, . . . , 2d− bm).

In particular, by Lemma 2.4.3, one has

(D + 1 − β1)ω(1)
0,ℓ = ω0,ℓ, (D − αℓ+1)ω(1)

0,ℓ = ω0,ℓ+1,

and
(D − αs1−s0)ω(1)

0,s1
= ωe,1,

where e is the least integer such that se > s0 = 1.
We also put ω(1)

r,ℓ = ωr,ℓ for r ≥ 1. Then use Lemma 3.2.2 for ω0 = ω
(1)
0,s1−s0

, ω1 = ω0,s1−s0 ,
and ω2 = ωe,1, we have

Span{ωr,ℓ | r, ℓ} = Span
(
. . . , ω0,s1−s0(= (D + 1 − β1)ω(1)

0,s1−s0
), ωe,1(= (D − αs0)ω(1)

0,s1−s0
), . . .

)
= Span({ω0,1, . . . , ω0,s1−s0−1, ω

(1)
0,s1−s0

} ∪ {ω(1)
r,ℓ | r ≥ 1, ℓ})

where 0 ≤ r ≤ m and 1 ≤ ℓ ≤ sr+1 − sr. Continue using Lemma 3.2.2 for ω0 = ω
(1)
0,ℓ , ω1 = ω0,ℓ,

and ω2 = ω0,ℓ+1 for ℓ = s1 − s0 − 1, . . . , s1 − 1, we have

Span{ωr,ℓ | r, ℓ} = Span({ω0,1, . . . , ω0,s1−s0−1, ω
(1)
0,s1−s0

} ∪ {ω(1)
r,ℓ | r ≥ 1, ℓ})

= Span({ω0,1, ω
(1)
0,2 . . . , ω

(1)
0,s1−s0

} ∪ {ω(1)
r,ℓ | r ≥ 1, ℓ})

= Span(ω(1)
r,ℓ | r, ℓ).

Step i ≥ 2: Assume that we have already obtained elements ω(i−1)
r,ℓ for i ≥ 2. If si = si−1, we

skip this step and put ω(i)
r,ℓ = ω

(i−1)
r,ℓ for any r and ℓ. Otherwise, let ω(i)

r,ℓ be differential forms of
the forms g · η for some monomials g, such that

P(ω(i)
r,ℓ) =

{
P(ω(i−1)

r,ℓ ) −Qi if r ≤ i− 1,
P(ω(i−1)

r,ℓ ) if i ≤ r ≤ m.
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More precisely, when r ≤ i− 1, we keep the first n− 1 coordinates of P(ω(i−1)
r,ℓ ) unchanged, and

replace the last m coordinates of P(ω(i−1)
r,ℓ ) by that of P(ω(i)

r,ℓ):

(d− b1, . . . , d− bi, 2d− bi+1, . . . , 2d− bm).

Similar to step 1, we use Lemma 2.4.3 and Lemma 3.2.2 (sr+1 − sr)-many times to deduce

Span(ω(i)
r,ℓ | r, ℓ) = Span(ω(i−1)

r,ℓ | r, ℓ) = Span(ωr,ℓ | r, ℓ),

where 0 ≤ r ≤ m, and 1 ≤ ℓ ≤ sr+1 − sr.
After Step m: After m steps, we get ω(m)

r,ℓ such that

P(ω(m)
r,ℓ ) = (a2, . . . , asr+ℓ−1, asr+ℓ − d, . . . , an − d, d− b1, . . . , d− bm).

Note that the there is a bijection between {(r, ℓ)}0≤r≤m,1≤ℓ≤sr+1−sr
and {1, · · · , n} by sending

(r, ℓ) to sr + ℓ − 1. We set ω̃sr+ℓ−1 = ω
(m)
r,ℓ via this map. Then by Lemma 2.4.3, we have

ω̃i+1 = (D − 1 + ai+1
d )ω̃i for 1 ≤ i ≤ n− 1. It follows that

Span(Diω̃1 | 0 ≤ i ≤ n− 1) = Span(ω̃i | 1 ≤ i ≤ n)
= Span(ω(m)

r,ℓ | r, ℓ)
= Span(ωr,ℓ | r, ℓ).

By Proposition 2.4.1 and Remark 2.4.2, ω̃1 is a cyclic vector, from which we showed that {ωr,ℓ}r,ℓ

form a basis. This finishes the proof.

3.3 Calculation of the irregular Hodge filtration
Recall that a non-resonant hypergeometric connection is rigid. Hence, it underlies an irregular

mixed Hodge module on P1 [32, Thm. 0.7], and therefore, admits a unique irregular Hodge
filtration F •

irr (up to a shift). When n = m, the irregular mixed Hodge module structure coincides
with the variation of Hodge structures on Hyp(α, β).

Recall that for (α, β), we defined in (1.0.1.1) the numbers

θ(k) = (n−m)αk + #{i | βi < αk} + (n− k) −
n∑

i=1
αi +

m∑
j=1

βj .

Theorem 3.3.1. Assume (α, β) is non-resonant.

(1). When α1 = 0, via the isomorphism Hyp(α, β) ≃ Hn+m−1
dR (U/S, f)(G,χ̃×ρ), the irregular

Hodge filtration on Hyp(α, β) can be identified with the following filtration of sub-bundles:

F p
irrH

n+m−1
dR (U/S, f)(G,χ̃×ρ) =

⊕
n+m−1−w(ωr,s)≥p

ωr,sOS .

(2). Up to an R-shift, the jumps of the irregular Hodge filtration on Hyp(α, β) occur at θ(k) and
for any p ∈ R we have

rk grp
Firr

Hyp(α;β) = #θ−1(p).
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Remark 3.3.2. (i) By [33, Rem. 6.3], the irregular Hodge filtration satisfies the Griffiths’
transversality, that is, ∇(F p

irrHyp(α, β)) ⊂ Ω1
S ⊗ F p−1

irr Hyp(α, β), for all p ∈ R.
(ii) Inspired by the Griffiths’ transversality, we expect that there exist oper structures on the

hypergeometric connections, which refine the irregular Hodge filtrations. An oper structure is
essential in the geometric Langlands correspondence [6, 43, 21].

To prove the above theorem, we study the Hodge numbers of the irregular Hodge filtration on
fibers as explained in Section 1.2.

Theorem 3.3.3. Up to an R-shift, the jumps of the irregular Hodge filtration F •
irr on the fiber

Hyp(α;β)a occur at θ(k) for 1 ≤ k ≤ n. Moreover, we have dim grp
Firr

Hyp(α;β)a = #θ−1(p) for
any p ∈ R.

3.3.1 Proof of Theorem 3.3.3

Proof. We may assume α1 = 0 by (2.1.1.2). By Proposition 2.3.1 and Definition 3.1.1, we have

F •
irrHyp(α;β)a ≃ F •

irrHn+m−1
dR (Gn+m−1

m , fa)(G,χ̃×ρ) (3.3.3.1)

≃ F •
irrHn+m−1

dR (Gn+m−1
m ,−f(−1)n−ma)(G,χ̃×ρ),

where χ̃ and ρ are products of characters corresponding to αi and βj from (2.3.0.1). So
it suffices to compute the irregular Hodge filtration on the twisted de Rham cohomologies
Hn+m−1

dR (Gn+m
m ,±fa)(G,χ̃×ρ). Since fa is non-degenerate with respect to ∆(fa), we can compute

the filtration in terms of Newton polyhedron filtration.
Let ωr,ℓ be the basis of Hyp(α;β)a from Proposition 3.2.1. Recall that w(ωr,ℓ) is the minimal

positive real number w such that P(gr,ℓ) ∈ w · ∆(fa). It follows from (3.1.0.4) that

ωr,ℓ ∈ F
n+m−1−w(ωr,ℓ)
irr Hn+m−1

dR (Gn+m−1
m ,±fa)(G,χ̃×ρ).

We consider an auxiliary filtration G• on Hn+m−1
dR (Gn+m−1

m ,±fa)(G,χ̃×ρ) defined by

Gp := span{ωr,ℓ | n+m− 1 − w(ωr,ℓ) ≥ p}. (3.3.3.2)

By the following lemmas 3.3.4, 3.3.5, and 3.3.6, the filtration F • coincides with G•, which finishes
the proof of the theorem.

Lemma 3.3.4. We set θ(n+ 1) = θ(1). For 0 ≤ r ≤ m, 1 ≤ ℓ ≤ sr+1 − sr, we have

n+m− 1 − w(ωr,ℓ) = θ(sr + ℓ).

Lemma 3.3.5. For 0 ≤ p ≤ n+m− 1, we have

dim grp
GHn+m−1

dR (Gn+m−1
m ,±fa)(G,χ̃×ρ) = dim grn+m−1−p

G Hn+m−1
dR (Gn+m−1

m ,∓fa)(G,χ̃−1×ρ−1).

Lemma 3.3.6. The two filtrations F •
irr and G• coincide.

Proof of Lemma 3.3.4. By Lemmas 2.2.2, 2.2.3, and 2.2.4, the weight w(ωr,ℓ) equals to the
number maxk{hk(gr,ℓ)/d}, where hk are defined in (2.2.2.1), (2.2.3.1), and (2.2.4.1). We can
check that

w(ωr,ℓ) = hsr+ℓ(gr,ℓ)/d,
where we put h1 = . . . = hn = hn+1 when n = m. Now it suffices to check that n+m−1−w(ωr,ℓ)
agrees with one of the jumps of the irregular Hodge numbers of Hyp(α;β)a.
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If sr + ℓ = n+ 1, the monomial gm,n+1−sm corresponds to the point

(a2, . . . , an, d− b1, . . . , d− bm).

Then we have

n+m− 1 − hn+1(gm,n+1−sm)/d = n− 1 −
n∑

i=1
αi +

m∑
j=1

βj = θ(1).

If sr + ℓ < n+ 1, we have

n+m− 1 − hsr+ℓ(gr,ℓ)/d

=n+m− 1 −
( n∑

i=1
αi − (n+ 1 − sr − ℓ) −

m∑
j=1

βj + (2m− r) − (n−m)(αsr+ℓ − 1)
)

=(n−m)αsr+ℓ + r + (n− sr − ℓ) −
n∑

i=1
αi +

m∑
j=1

βj ,

which is exactly θ(sr + ℓ).

Proof of Lemma 3.3.5. For simplicity, we write

δ±
p (α, β) := dim grp

GHn+m−1
dR (Gn+m−1

m ,±fa)(G,χ̃×ρ). (3.3.6.1)

Recall that in (3.1.1.1), we let t be the biggest natural number such that αt = 0. For 1 ≤ k ≤ t,
the numbers αk and ᾱt+1−k are 0. And for t+ 1 ≤ k ≤ n, we have ᾱn−k+t+1 = 1 − αk. Then

n∑
i=1

αi +
n∑

i=1
ᾱi = n− t and

m∑
j=1

βj +
m∑

j=1
β̄j = m.

Similar to the number θ(k), we let θ̄(k) be the numbers

(n−m)ᾱk + #{i | β̄i < ᾱk} + (n− k) −
n∑

i=1
ᾱi +

m∑
j=1

β̄j , 1 ≤ k ≤ n

for the sequences ᾱ and β̄. Then for 1 ≤ k ≤ t, we have

θ(k) + θ̄(t+ 1 − k) =
(
n− k −

n∑
i=1

αi +
m∑

j=1
βj

)
+
(
n− (t+ 1 − k) −

n∑
i=1

ᾱi +
m∑

j=1
β̄j

)
=(2n− t− 1) − (n− t) +m = n+m− 1.

For t+ 1 ≤ k ≤ n, we have

θ(k) + θ̄(n− k + t+ 1)

=
(

(n−m)αk + #{j | βj < αk} + n− k −
n∑

i=1
αi +

m∑
j=1

βj

)

+
(

(n−m)ᾱn−k+t+1 + #{j | β̄j < ᾱn−k+t+1} + n− (n− k + t+ 1) −
n∑

i=1
ᾱi +

m∑
j=1

β̄j

)
=(n−m) +m+ (n− t− 1) − (n− t) +m = n+m− 1.
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So there exists a permutation σ ∈ Sn such that θ(k) + θ̄(σ(k)) = n+m− 1. It follows that

δ±
p (α, β) =#{k | θ(k) = p} = #{k | n+m− 1 − p = n+m− 1 − θ(k)}

=#{k | θ̄(k) = n+m− 1 − p} = δ∓
n+m−1−p(ᾱ, β̄).

Proof of Lemma 3.3.6. For simplicity, we write

h±
p (α, β) := dim grp

Firr
Hn+m−1

dR (Gn+m−1
m ,±fa)(G,χ̃×ρ). (3.3.6.2)

By Lemma 3.3.4, for every p ∈ Q, we have

GpHn+m−1
dR (Gn+m

m ,±fa)(G,χ̃×ρ) ⊂ F p
irrHn+m−1

dR (Gn+m
m ,±fa)(G,χ̃×ρ), (3.3.6.3)

which implies that
∑

q≤p δ
±
q (α, β) ≤

∑
q≤p h

±
q (α, β).

To prove the reverse inclusion, we consider the duality between the two filtered vector spaces
(Hn+m−1

dR (Gn+m−1
m ,±fa)(G,χ̃×ρ), F •

irr) and (Hn+m−1
dR (Gn+m−1

m ,∓fa)(G,χ̃−1×ρ−1), F •
irr), induced by

Proposition 3.1.2 and [42, Thm. 2.2]. More precisely, we have

h±
p (α, β) = h∓

n+m−1−p(ᾱ, β̄). (3.3.6.4)

Combining Lemma 3.3.5 and the equations (3.3.6.3) and (3.3.6.4), we see, for any p ∈ R, that

dimGpHn+m−1
dR (Gn+m

m ,±fa)(G,χ̃×ρ)

=
∑
q≤p

δ±
q (α, β) ≤

∑
q≤p

h±
q (α, β) =

∑
q≥n+m−1−p

h∓
q (ᾱ, β̄)

≤
∑

q≥n+m−1−p

δ∓
q (ᾱ, β̄) =

∑
q≤p

δ±
q (α, β)

= dimGpHn+m−1
dR (Gn+m

m ,±fa)(G,χ̃×ρ).

Hence, both sides in (3.3.6.3) have the same dimension for every p. Then Lemma 3.3.6 follows.

3.3.2 Proof of Theorem 3.3.1

Proof. We may assume α1 = 0 by (2.1.1.2). By [32, Prop. 3.54] and [28, Prop. 11.22], the irregular
Hodge filtration on Hyp(α, β) induces those on fibers Hyp(α, β)a at closed points of S, i.e.,
(F •

irrHyp(α, β))a = F •
irr(Hyp(α, β))a. We have shown in Theorem 3.3.3 that the irregular Hodge

filtration on the fibers Hyp(α, β)a are given in terms of the cohomology classes ωr,s in (3.3.3.2).
Hence, we deduce that the irregular Hodge filtration on Hyp(α, β) is the one in assertion (1), and
the irregular Hodge numbers are those given in (2).

4 Frobenius structures on hypergeometric connections and
p-adic estimates

In this section, let p be a prime number and k = Fq the finite field with q = ps elements for
an integer s ≥ 1. Let K be a finite extension of Qp with residue field k containing an element π
satisfying πp−1 = −p. We fix such an element π and denote the associated additive character by
ψ : Fp → K× [7, (1.3)]. The q-th power Frobenius on k admits a lift σ = id on OK .
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Let n > m be two integers, α = (αi = ai

q−1 )n
i=1, β = (βj = bj

q−1 )m
j=1 be two sequences of

non-decreasing rational numbers ∈ [0, 1) with denominator q − 1. Let ω : k× → K× be the
Teichmüller character and set χi = ωai (resp. ρj = ωbj ). The hypergeometric sum associated to
ψ, χ = (χ1, . . . , χn), ρ = (ρ1, . . . , ρm) is defined, for a ∈ k×, by

Hyp(n,m)(χ; ρ)(a) =
∑

xi,yj∈k×,
x1...xn=ay1...ym

ψ

(
Trk/Fp

( n∑
i=1

xi −
m∑

j=1
yj

))
·

n∏
i=1

χi(xi)
m∏

j=1
ρ−1

j (yj). (4.0.0.1)

When (χ, ρ) is non-resonant, the above sum equals to (up to a sign) the Frobenius trace of the
hypergeometric overconvergent F -isocrystal H yp(χ, ρ) at a ∈ Gm(k) [27] and therefore can be
written as a sum of n Frobenius eigenvalues. Its underlying connection is the hypergeometric
connection Hyp(−1)m+np/πn−m [27, Thm. 4.1.3]. When (χ, ρ) is resonant, the above sum can be
also written as a sum of n Frobenius eigenvalues (see § 4.2.1 for a direct proof by induction on n).

We are interested in the p-adic valuation of Frobenius eigenvalues (normalized by ordq) of the
above sum (called Frobenius slopes), encoded in the Frobenius Newton polygon [26, §2].

Recall that the irregular Hodge numbers of the hypergeometric connection Hyp(α;β) are
given by the function θ : {1, . . . , n} → Q (1.0.1.1) is defined by

θ(k) = (n−m)αk + #{i | βi < αk} + (n− k) −
n∑

i=1
αi +

m∑
j=1

βj . (4.0.0.2)

Definition 4.0.1. Let δ1 < · · · < δk be the Frobenius slopes of Hyp(n,m)(χ; ρ)(a), normalised by
ordq(q) = 1, (resp. irregular Hodge numbers of Hyp(α, β)) with multiplicity λ1 < · · · < λk. The
Newton polygon (resp. irregular Hodge polygon) is defined as the line in R2 joining Pi:

P0 = (0, 0), Pi =

 i∑
j=1

λj ,

i∑
j=1

λjδj

 , i = 1, . . . , k.

Theorem 4.0.2. Suppose n > m and the orders of χi, ρj divide p− 1. Then for each a ∈ Gm(k),
the Frobenius Newton polygon of Hyp(n,m)(χ; ρ)(a) coincides with the irregular Hodge polygon
defined by (4.0.0.2).

A “Newton above Hodge” type result for twisted exponential sums was obtained by Adolphson
and Sperber [3]. In our case, we show that the (combinatorial) Hodge polygon in loc. cit. for
hypergeometric sums coincides with the irregular Hodge polygon of hypergeometric connections.
Then, we apply a result of Wan [39] to conclude “Newton equals to Hodge”. In [41], the second
author and Zhu used a similar argument to study the Newton polygon of Kloosterman sums for
classical groups.

4.1 Frobenius Newton polygon above Hodge polygon
In this subsection, we revise Adolphson–Sperber’s definition of (combinatorial) Hodge polygon

and their result on “Newton above Hodge” for certain twisted exponential sums [3]. Finally, we
show that we can identity their Hodge polygon with the irregular Hodge polygon of hypergeometric
connections (Proposition 4.1.7).

4.1.1. Let N be a positive integer,

χ = (χ1, . . . , χN ) : (k×)N → K×
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a multiplicative character, and g : GN
m → A1 a morphism defined by a Laurent polynomial

g(x1, · · · , xN ) =
M∑

j=1
ajx

uj ∈ k[x±
1 , · · · , x±

N ],

where {uj}M
j=1 is a finite subset of ZN and aj ∈ k×. For m ∈ N, we consider the twisted

exponential sum
Sm(χ, g) =

∑
x∈GN

m(Fqm )

χ(m)(x)ψ(m)(g(x)), (4.1.1.1)

where χ(m) = χ ◦ NmFqm /k, ψ(m) = ψ ◦ TrFqm /Fp
. The associated L-function

L(χ, g;T ) = exp
(∑

m≥1
Sm(χ, g)T

m

m

)
(4.1.1.2)

is a rational function in T by the Grothendieck–Lefschetz trace formula (or the Dwork trace
formula).

Recall that we denote ∆ = ∆(g) by the convex closure in RN generated by the origin and
lattices defined by the exponents {uj} of g in Definition 2.2.1. Let C(g) be the cone over ∆, i.e.,
the union of all rays in RN emanating from the origin and passing through ∆.

We set M(g) = C(g)∩ZN . Adolphson and Sperber considered a subring R(g) of k[x±
1 , . . . , x

±
N ]

defined by monomials with exponents in M(g) [2, (1.7)]:

R(g) = k[xM(g)].

We take di ∈ [0, q − 2] such that χi = ω−di 4. We set

di =
{
q − 1 − di di ̸= 0
di di = 0

,

and
d = (d1, . . . , dN ), d = {d1, . . . , dN }, Nd = (q − 1)−1d + ZN .

We define a R(g)-module Rd(g) [2, (1.12)] by

Rd(g) =
{ ∑

finite
bux

u|u ∈ Nd ∩ C(g), bu ∈ k

}
.

There exists a (minimal) positive integer M such that for all u ∈ ZN

q−1 ∩C(g), the weight function
w(u), defined as the minimal positive real number w such that u ∈ w∆(g), is a rational number
with denominator dividing M . Then w defines an increasing filtration on R(g) by

R(g)i/M =
{ ∑

u∈M(g)

bux
u : w(u) ≤ i

M
for all u with bu ̸= 0

}
.

We denote the associated graded module by

R(g) =
⊕
i≥0

R(g)i/M , R(g)i/M = R(g)i/M/R(g)(i−1)/M .

Similarly, we equip Rd(g) with a filtration compatible with that of R(g), and let Rd(g) be the
associated graded R(g)-module.

4Adolphson–Sperber’s convention χi = ω−di is different from our convention in the beginning of § 4 by a minus
sign.
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4.1.2. In the following, we assume that g is non-degenerate and that dim ∆(g) = N .
For 1 ≤ i ≤ N , let gi be the image of xi

∂
∂xi

g in R(g)1, and set

Id = g1R(g)d + · · · + gNR(g)d

a graded submodule of R(g)d. For each i ≥ 0, we define a finite set B
i/M
d (= B(g)i/M

d ) ⊂ Nd∩C(g)
of exponents as follows. We take a k-linearly independent set of monomials {xµ|µ ∈ B

i/M
d } of

weight i/M which spans a k-subspace V d,i/M complement to R(g)d,i/M ∩ Id, i.e.,

R(g)d,i/M = V d,i/M

⊕
(R(g)d,i/M ∩ Id,i/M ).

We set B(g)d = ∪i≥0B(g)i/M
d and V (g) the volume of ∆(g). The quotient R(g)d/Id admits a

basis of monomials in Sd and has dimension [3, Lem. 2.8]

dimR(g)d/Id = N !V (g).

In this case, the L-function L(χ, g;T )(−1)N−1 (4.1.1.2) is a polynomial of degree N !V (g) [3,
Cor. 2.12]. The q-order of roots of this polynomial are called Frobenius slopes of the twisted
exponential sums Sm(χ, g).

Adolphson and Sperber studied the Frobenius Newton polygon defined by Frobenius slopes of
this L-function (Definition 4.0.1) and compared it with a Hodge polygon defined as below.

For an integer 0 ≤ d ≤ q − 2, let d′ be the nonnegative residue of pd modulo q − 1. Recall
that q = ps for an integer s ≥ 1. For d = (d1, . . . , dN ), we set d′ = (d′

1, . . . , d
′
N ) and d(i) the i-th

composition of (−)′ on d for i ≥ 1. Note that d(s) = d.
We arrange elements of Sd = {ud(1), . . . , ud(N !V (g))} by w(ud(1)) ≤ · · · ≤ w(ud(N !V (g))).

And we repeat this ordering for Sd′ , . . . , Sd(s−1) . For an integer ℓ ≥ 0, we set [3, Thm. 3.17]

W (ℓ) = card
{
j

∣∣∣∣ s−1∑
i=0

w(ud(i)(j)) = ℓ

M

}
.

When ℓ > sNM , we have W (ℓ) = 0.

Definition 4.1.3 (Adolphson–Sperber). The Hodge polygon HP(∆(g)d) is defined by the convex
polygon in R2 with vertices (0, 0) and( m∑

ℓ=0
W (ℓ), 1

sM

m∑
ℓ=0

ℓW (ℓ)
)
, m = 0, 1, . . . , sNM.

Theorem 4.1.4 ([3, Cor. 3.18]). If g is non-degenerate and dim(∆(g)) = N , the Frobenius
Newton polygon of L(χ, g;T )(−1)N−1 lies above the Hodge polygon HP(∆(g)d), and their endpoints
coincide.

Definition 4.1.5. We say that (g, χ) is ordinary if these two polygons coincide. When the
character χ is trivial, we simply say g is ordinary.

4.1.6. In the following, we apply the above theory to the case of hypergeometric sums at the
beginning of § 4. We may assume that χ1 is trivial (i.e. α1 = 0). Let a be an element of k×.
We take N = n+m− 1, d = (a2, . . . , an, b1, . . . , bm), and g to be the non-degenerate function
(2.2.1.1)

fa = a
y1 . . . ym

x2 . . . xn
+ x2 + · · · + xn − y1 − · · · − ym.

Then, we recover the hypergeometric sum (4.0.0.1) from (4.1.1.1).
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Proposition 4.1.7. If (χ, ρ) is non-resonant and the orders of the characters χi and ρj divide
p− 1, then the Hodge polygon HP(∆(fa)d) coincides with the irregular Hodge polygon defined by
(4.0.0.2) associated to (0, α2 = a2

p−1 , . . . , αn = an

p−1 ), (β1 = b1
p−1 , . . . , βm = bm

p−1 ).

Proof. Since αi, βj have denominators dividing p− 1, the numbers d(i) are equal to d for every
i ≥ 1. In particular, the multi-set of slopes of HP(∆(fa)d) coincides with w(Sd) = {ω(u)|u ∈ Sd}.

The cohomology classes ωr,ℓ = gr,ℓ ·η in Proposition 3.2.1 form a basis of the de Rham cohomol-
ogy group Hn+m−1

dR (Ua, fa)(G,χ̃×ρ). By the calculation of cohomology groups [3, § 3, Thm. 3.14],
the functions {gr,ℓ} also form a basis of V d, with d = (a2, . . . , an, b1, . . . , bm). Hence

w(Sd) = {w(gr,ℓ)|0 ≤ r ≤ m, 1 ≤ ℓ ≤ sr+1 − sr}.

By (3.1.0.4), Lemma 3.3.4 and the duality (3.3.6.4), the set of weights w(Sd) coincides with the
set of irregular Hodge numbers (4.0.0.2). Then, the proposition follows.

4.2 Frobenius slopes of hypergeometric sums: proof of Theorem 4.0.2
We prove Theorem 4.0.2 by induction on n. Suppose the theorem holds when the rank of the

hypergeometric F -isocrystal is less than n.

4.2.1. Resonant case. We first show that we can deduce the assertion in the resonant case
from the induction hypothesis. We assume there exists i, j such that αi = βj .

We slightly modify our convention on α, β by replacing those αi, βj = 0 by 1 and then
arranging them as 0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ 1 and 0 < β1 ≤ · · · ≤ βm ≤ 1. Note that this
modification does not change the multi-set {θ(1), . . . , θ(n)} of irregular Hodge numbers. After
twisting by a multiplicative character, we may assume that χn = ρm = 1 are the trivial characters
(i.e., αn = βm = 1). Then we have the following identities:

Hyp(n,m)(χ; ρ)(a) (4.2.1.1)

=
∑

xi,yj∈k×

ψ

(n−1∑
i=1

xi + a
y1 · · · ym

x1 · · ·xn−1
−

m∑
j=1

yj

)
·

n−1∏
i=1

χi(xi)
m−1∏
j=1

ρ−1
j (yj)

=
∑

xi,yj∈k×,ym∈k

ψ

(n−1∑
i=1

xi −
m−1∑
j=1

yj + ym

(
a
y1 · · · ym−1

x1 · · ·xn−1
− 1
))

·
n−1∏
i=1

χi(xi)
m−1∏
j=1

ρ−1
j (yj)

−
∑

xi,yj∈k×

ψ

(n−1∑
i=1

xi −
m−1∑
j=1

yj

)
·

n−1∏
i=1

χi(xi)
m−1∏
j=1

ρ−1
j (yj)

= qHyp(n−1,m−1)(χ′; ρ′)(a) − (−1)m−1
n−1∏
i=1

G(ψ, χi)
m−1∏
j=1

G(ψ, ρ−1
j ),

where χ′ = (χ1, . . . , χn−1), ρ′ = (ρ1, . . . , ρm−1), and G(ψ, χi) =
∑

x∈k× ψ(x)χi(x) denotes the
Gauss sum. In particular, the above sum can be written as a sum of n Frobenius eigenvalues by
induction. Let θ′ be the function (4.0.0.2) defined by rational numbers α1, . . . , αn−1, β1, . . . , βm−1.
Then, we have

θ(k) = θ′(k) + 1, ∀ 1 ≤ k ≤ n− 1
and

θ(n) =
n∑

i=1
(1 − αi) +

∑
βj<1

βj = ordq

(n−1∏
i=1

G(ψ, χi)
m−1∏
j=1

G(ψ, ρ−1
j )
)
,
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where the second identity follows from Stickelberger’s theorem, saying that

ordq G(ψ, ω−k) = k

p− 1 .

Then, the theorem in the resonant case follows from the induction hypothesis and decomposition
(4.2.1.1).

4.2.2. Non-resonant case. By the previous argument, we may assume that the assertion for
the hypergeometric sum of type (n,m) defined by a resonant pair (α, β) is already proved. It
suffices to treat the non-resonant case. We may assume χ1 = 1 is trivial.

We set f̃a(x2, . . . , xn, y1, . . . , ym) = fa(xp−1
2 , . . . , xp−1

n , yp−1
1 , . . . , yp−1

m ). We first prove the
ordinariness of exponential sums associated to f̃a (Definition 4.1.5) using a theorem of Wan [39].

Let δ1, · · · , δm+n be all the facets of ∆ = ∆(f̃a) which do not contain the origin. Let f̃δi
a be

the restriction of f̃a to δi [40, §1.1], which is also non-degenerate [40, §3.1]. By [40, Thm. 3.1], f̃a

is ordinary if and only if each f̃δi
a is ordinary.

Each Laurent polynomial f̃δi
a is diagonal, that is, f̃δi

a has exactly n + m − 1 non-constant
terms of monomials and ∆(f̃δi

a ) is (n+m− 1)-dimensional [40, § 2]. Indeed, if V1, · · · , Vm+n−1
denote the vertex of δi written as column vectors, the set S(δi) of solutions of

(V1, · · · , Vm+n−1)

 r1
...

rm+n−1

 ≡ 0 (mod 1), ri rational, 0 ≤ ri < 1,

forms an abelian group, which is isomorphic to (Z/(p− 1)Z)n+m−1. We deduce that for each δi,
f̃δi

a is ordinary by [40, Cor. 2.6].
We have a decomposition of exponential sums as follows:∑

xi,yj∈k×

ψ(f̃a(xi, yj)) =
∑

χi,ρj

Hyp(n,m)(χ, ρ)(a), (4.2.2.1)

where the sum is taken over all multiplicative characters χi, ρj with 2 ≤ i ≤ n, 1 ≤ j ≤ m of
orders dividing p− 1. We have a similar decomposition for Bd (§ 4.1.2) given by

B1(f̃a) =
⊔
d

Bd(fa),

where 1 = (0, 0, . . . , 0) and d is taken over all (n + m − 1)-tuple of rational numbers with
denominators p− 1 in [0, 1).

On the left-hand side of (4.2.2.1), we have shown “Newton equals to Hodge” (i.e. the
ordinariness of f̃a). Together with the “Newton above Hodge” for each hypergeometric sum
(Theorem 4.1.4), we deduce that “Newton equals to Hodge” for each component of the right-hand
side. Then, the assertion in the non-resonant case follows from Proposition 4.1.7.

In particular, our proof shows Proposition 4.1.7 in the resonant case.

Corollary 4.2.3. Proposition 4.1.7 holds without the non-resonant assumption.

Proof. In the resonant case, the Frobenius Newton polygon equals the irregular Hodge polygon by
§4.2.1. By the proof in §4.2.2, the Frobenius Newton polygon equals the (combinatorial) Hodge
polygon defined by Adolphson–Sperber. Then, the assertion follows.
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