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Abstract. In this article, we study a family of motives Mk
n+1 associated with the symmetric

power of Kloosterman sheaves constructed by Fresán, Sabbah, and Yu. They demonstrated
that for n = 1, the L-functions of Mk

2 extend meromorphically to C and satisfy the functional
equations conjectured by Broadhurst and Roberts. Our work aims to extend these results to the
L-functions of some of the motives Mk

n+1, with n > 1, as well as other related two-dimensional
motives. In particular, we prove several conjectures of Evans type, which relate moments of
Kloosterman sheaves and Fourier coefficients of modular forms.
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1. Introduction

The Kloosterman sums are exponential sums over finite fields, defined for each power of prime
numbers q = pr and each a ∈ Fq, by

Kl2(a; q) :=
∑
x∈F×

q

exp
(
2πi/p · TrFq/Fp

(
x+

a

x

))
,

where TrFq/Fp
is the trace from Fq to Fp. These sums can be regarded as finite field versions of

Bessel functions,
Be(z) :=

∮
S1

exp
(
x+

z

x

) dx

x
,

which satisfy the Bessel differential equations (z∂z)
2 − z = 0.

When a 6= 0, Weil showed in [39] that Kl2(a; q) = −(αa + βa) for some algebraic numbers αa, βa
of complex norm p1/2. For k ≥ 1, the k-th symmetric power moments of Kloosterman sums are
integers mk

2(q) defined by

mk
2(q) =

∑
a∈Fq

k∑
i=0

αiaβ
k−i
a .

To package the information of these moments as q varies across all powers of p, we consider the
generating series

exp

(∑
r≥1

mk
2(p

r)

r
T r

)
,

which serves as the analog of the Hasse–Weil zeta function for varieties over finite fields.
We define the (partial) L-function attached to k-th symmetric power moments of Kloosterman

sheaves, denoted by LSk (s), by considering the Euler product, where the local factors at p are made
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from the aforementioned generating series. These L-functions are a priori defined on the domain
{s ∈ C | Re(s) > 1 + k+1

2 } by construction and the work of Fu–Wan [17]. Hence, it is natural
to question whether this L-function can be extended meromorphically to the complex plane and
whether it satisfies a functional equation.

Example 1.1. The cases for k ≤ 8 have been proven indirectly by demonstrating that the
expressions of moments of Kloosterman sums consist of polynomials in p, Dirichlet characters, and
Fourier coefficients of modular forms (holomorphic cuspidal Hecke eigenforms).

• When k ≤ 4, the moments mk
2(p) can be computed explicitly. We find that the L-function

is trivial if k = 1, 2, or 4, and is the Dirichlet L-function L
(
s, (•3 )

)
if k = 3.

• When k = 5, there exists a holomorphic cuspidal Hecke eigenform f ∈ S3

(
Γ0(15),

( ·
15

))
such that

af (p) = −
1

p2
(m5

2(p) + 1)

if p - 15, proved by Peters et al. [31] and Livné [28].
• When k = 6, there exists a holomorphic cuspidal Heck eigenform f ∈ S4(Γ0(6)) such that

af (p) = −
1

p2
(m6

2(p) + 1)

if p - 6, proved by Hulek et al. [22].
• When k = 7, there exists a holomorphic cuspidal Hecke eigenform f ∈ S3(Γ0(525), εf ),

where εf =
( ·
21

)
· ε5 and ε5 is a quartic character with conductor 5, such that

af (p)
2εf (p)

−1 − p2 = − 1

p2

( p

105

)
(m7

2(p) + 1)

for p > 7, conjectured by Evans [12] and proved by Yun [41].
• When k = 8, there exists a holomorphic cuspidal Hecke eigenform f ∈ S6(Γ0(6)), such that

af (p) = −
1

p2
(m8

2(p) + 1)

for p - 6, conjectured by Evans [13] and proved by Yun and Vincent [41].

From the examples discussed, we deduce that LSk (s) can be extended meromorphically to C and
satisfies a functional equation when k ≤ 8. For general k, Broadhurst and Roberts predicted precise
formulas for the functional equations of LSk (s) in [6, 7]. Then, Fresán–Sabbah–Yu established the
following theorem:

Theorem 1.2 (Fresán–Sabbah–Yu). The partial L-function LSk (s) can be extended meromorphically
to the complex plane. Furthermore, we can complete LSk (s) to a holomorphic function Λk(s) such
that

Λk(s) = εkΛk(k + 2− s),
where εk ∈ {±1} and εk is 1 if k is odd.

The primary object of this article is to extend the theorem above to L-functions attached to
moments (beyond symmetric power moments) of Kloosterman sums in multiple variables.

1.1. Kloosterman sheaves. The Kloosterman sums in n variables are the exponential sums over
finite fields, defined for each power of prime numbers q = pr and each a ∈ F×

q , by

Kln+1(a; q) :=
∑

x1,...,xn∈F×
q

exp

(
2πi

p
· TrFq/Fp

(
x1 + . . .+ xn +

a

x1 · · ·xn

))
.

By fixing a prime number ` 6= p and an embedding ι : Q` → C, Deligne constructed lisse `-
adic sheaves Kln+1 over Gm,Fq

= A1
Fq
\0, which are pure of weight n and of rank n + 1 in [9,

Sommes. Trig. Thm. 7.8]. Moreover for every a ∈ F×
q = Gm,Fq (Fq) and every geometric point a

localized at a, we have
ι ◦ Tr(Frobq, (Kln+1)a) = (−1)nKln+1(a; q).
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Hence, the `-adic sheaves Kln+1 can be regarded as the sheaf version of Kloosterman sums, and we
call them Kloosterman sheaves.

In their work [20], Heinloth, Ngô, and Yun constructed a larger class of `-adic sheaves, called
Kloosterman sheaves for reductive groups, using methods from the geometric Langlands program.
For each split reductive group G, they construct a tensor functor
(1.3) KlG : Rep(G)→ LocGm,Fq

from the category of finite-dimensional representations of G with coefficients in Q`(µp) to the
category of lisse `-adic sheaves on Gm,Fq

. Our primary interest lies in the case where G = SLn+1.
In particular, by selecting V as the standard representation Std of SLn+1 and SymkStd respectively,
we obtain the classical Kloosterman sheaf Kln+1(

n
2 ) and its symmetric power SymkKln+1(

nk
2 ).

Let V = Vλ be the representation of the highest weight λ = (λ1, . . . , λn) of SLn+1. We denote
|λ| =

∑n
i=1 λi and Klλn+1 as the sheaf KlSLn+1(Vλ)(

n|λ|
2 ). We have an explicit description of Klλn+1

using Weyl’s construction, detained in Section 2.1. In what follows, we formulate the analogs of
moments and L-functions for Klλn+1.

Definition 1.4. For each λ, the moment of the Kloosterman sheaf Klλn+1 is defined as the integer

mλ
n+1(q) := −

∑
a∈F×

q

Tr(Frobq, (Klλn+1)a).

By the Grothendieck trace formula [9, Rapport. Thm. 3.1] and Theorem 4.5, the generating series

Z(λ, n+ 1, p;T ) := exp

(∑
r≥1

mλ
n+1(p

r)

r
· T r

)
.

is a rational function
2∏
i=0

det(1− FrobpT | Hiét,c(Gm,Fp
,Klλn+1))

(−1)i+1

∈ Q(T ).

In order to define the partial L-function associated with Klλn+1 as an Euler product, it is not
advisable to directly use Z(λ, n + 1, p;T ) as the local factor at p, because the complex norms
of roots and poles of Z(λ, n + 1, p;T ) lie within the set {p−i/2 | 0 ≤ i ≤ n|λ| + 1}. Motivated
by the work of Fu–Wan [17, 18] for sheaves SymkKln+1, we remove some ”trivial factors” from
Z(λ, n+ 1, p;T ). By the long exact sequence (2.5) and the main theorem of Weil II [10, 3.3.1], we
need to discard the contributions from the invariants and coinvariants of the Kloosterman sheaves
at 0 and ∞. Hence, the ideal candidate for the local factors at p is

M(λ, n+ 1, p;T ) = det(1− FrobpT | H1
ét,mid(Gm,Fp

,Klλn+1)),

where

H1
ét,mid(Gm,Fp

,Klλn+1) = im
(
H1
ét,c(Gm,Fp

,Klλn+1)
forget support−−−−−−−−−→ H1

ét(Gm,Fp
,Klλn+1)

)
is the middle `-adic cohomology of Klλn+1.

Definition 1.5. The partial L-function LS(λ, n+ 1; s) attached to Klλn+1 is defined as the Euler
product

LS(λ, n+ 1; s) :=
∏

s6∈S(λ,n+1)

M(λ, n+ 1, p; p−s)−1.

Here, the set S(λ, n+ 1) is a finite set of primes, only depending on λ and n+ 1 (see Theorem 4.5)
such that the degree of M(λ, n+ 1, p;T ) remains constant for p 6∈ S(λ, n+ 1).

The L-function is a priori a holomorphic function on the domain {s ∈ C | Re(s) > 1 + n|λ|+1
2 },

because the complex norms of the roots of M(λ, n+ 1, p;T ) are p−
n|λ|+1

2 . However, the definition
alone does not provide further information. We can ask, as before, whether the partial L-function
LS(λ, n+1; s) can be meromorphically extended to the entire complex plane and satisfies a functional
equation.
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1.2. Main results. We introduce our main results here.

Theorem 1.6. For the values of (n+ 1, k) given in the table below,

n+ 1 k

3 1, 2, 3, 4, 5, 6, 7, 8, 9
5 1, 2, 3, 4
4, 7, 8, 10, 11, 13 1, 2, 3

the partial L-function LS(k, n+ 1; s) extends meromorphically to the complex plane. Furthermore,
it can be completed into a holomorphic function Λ(k, n+ 1; s) satisfying a functional equation

Λ(k, n+ 1; s) = ±Λ(k, n+ 1;nk + 2− s).

In Example 1.1, we see that there are some relations between Fourier coefficients of certain
explicitly determined modular forms and symmetric power moments of Kloosterman sums. Yun
proposed Conjectures of Evans type in [41], predicting new relations for Kloosterman sheaves for
reductive groups. For simplicity, throughout this article, a modular form will refer to a normalized
holomorphic cuspidal Hecke eigenform.

These relations imply that the L-functions of these sheaves are L-functions of the corresponding
modular forms.

Theorem 1.7. The L-functions of the Kloosterman sheaves Sym4Kl3, Sym3Kl4, Sym4Kl4,Sym3Kl5,
Kl

(2,1)
3 and Kl

(2,2)
3 arise from modular forms. Moreover, we determine explicitly these modular

forms and the relations between their Fourier coefficients and moments of Kloosterman sheaves.
The information of these modular forms f ∈ Sk(Γ0(N), ε) are summarized in the following table.

Sheaves N k ε labels in LMFDB [37]

Sym4Kl3 14 4 1 14.4.a.b
Sym3Kl4 15 3

( •
15

)
15.3.a.b.

Sym4Kl4 10 6 1 10.6.a.a.
Sym3Kl5 33 4 1 33.4.a.b

Kl
(2,1)
3 14 2 1 14.2.a.a

Kl
(2,2)
3 6 4 1 6.4.a.a

Alongside establishing the main theorems, we have also successfully proved several new results
about the Kloosterman Sheaves. For example, we calculated the local monodromy group of Kl3 at
∞ when p = 3 in theorem 2.24. When n ≥ 3, the local monodromy group of Kln+1 at ∞ when
p | n+ 1 is still unknown.

Furthermore, we observe that the modular forms linked to the moments of the sheaves Sym6Kl2
and Kl

(2,2)
3 are identical, with label 6.4.a.a in LMFDB, thanks to theorem 1.7 and [22]. In particular,

we deduce an identity between moments of Sym6Kl2 and Kl
(2,2)
3 in (5.18). This prompts us to ask

whether a geometric explanation exists for this phenomenon, as conjectured in conjecture 5.19.

1.3. Idea of the proof. Our strategy in proving theorem 1.6 and theorem 1.7 is as follows. We
begin with constructing families of Galois representations of geometric origin, whose L-functions
precisely match L(λ, n+1; s), extending the construction in [16, (3.1)]. Then, we subtract geometric
information from these families of Galois representations to be able to apply some theorems from the
automorphic side. Once we establish that these Galois representations are potentially automorphic,
the L-functions L(λ, n+ 1; s) extend meromorphically to C and satisfy functional equations as a
result. At last, for theorem 1.7, one needs extra numerical results to locate the modular forms in
LMFDB.

1.3.1. Galois representations arising from geometry. Drawing inspiration from the analogy between
Kloosterman sums and Bessel functions, Fresán, Sabbah, and Yu considered the Kloosterman
connection, which is the rank n + 1 connection on Gm,C corresponding to the Bessel differential
equation (z∂z)

n+1 − z = 0. They interpret the middle de Rham cohomology of the connection
SymkKln+1, i.e., the image of the forget supports morphism from the cohomology with compact
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support to the usual cohomology, as the de Rham realization of an exponential motive over Q in the
sense of [15]. This exponential motive is classical, meaning that it is isomorphic to a Nori motive
Mk
n+1 over Q.
This motive is isomorphic to a subquotient of Hnk−1

c (K)(−1), where K is the hypersurface defined
by the Laurent polynomial1

g�kn+1 =

k∑
i=1

(
n∑
j=1

yi,j +
1∏n

j=1 yi,j

)
in the torus Gnkm . We extend their method to construct a motive Mλ

n+1 for each λ ∈ Nn in
Definition 3.3, using the Weyl construction. When λ = (k, 0, . . . , 0), we recover the motive Mk

n+1

constructed by Fresán–Sabbah–Yu.
For each motive Mλ

n+1, its `-adic realizations (Mλ
n+1)` are continuous `-adic representations

of Gal(Q/Q) with coefficients in Q`, isomorphic to subquotients of H
n|λ|−1
ét,c (KQ,Q`)(−1). By

Theorem 4.5, we demonstrate that {(Mλ
n+1)`}` form a compatible family of Galois representations,

with (Mλ
n+1)` being unramified as a representation of Gal(Qp/Qp) for primes p outside a finite set

of primes, S(λ, n+ 1). Moreover, there exists an isomorphism of Gal(Qp/Qp)-representations

(1.8) (Mλ
n+1)`[ζp] ' H1

ét,mid(Gm,Fp
,Klλn+1).

Subsequently, we observe that the partial L-functions of this family of `-adic Galois representations
coincide with the L-functions LS(λ, n+ 1; s) of Klλn+1. We refer to Mλ

n+1 as the motive attached to
the sheaf Klλn+1.

To investigate these compatible families of Galois representations, as indicated by (1.8), it is
necessary to study the cohomologies of Kloosterman sheaves. However, the challenges posed by
Klλn+1 are notably more intricate compared to the relatively straightforward scenarios encountered
with SymkKl2 in [41, 16]. Notably, we employ complicated combinatorial formulas to describe
Klλn+1, which all become simple for SymkKl2 (see proposition 3.8 for example). Also, an annoying
new feature of Klλn+1 is that their 0-th cohomology might be nonzero, contrary to the case of
SymkKl2 always vanishes. This phenomenon makes the proof of theorem 3.11 and theorem 4.15
more technical, necessitating a degree of compromise by introducing certain technical restrictions.

1.3.2. Potential automorphy. We prove theorem 1.6 by applying a theorem by Patrikis–Taylor [30]
to {(Mλ

n+1)`}`. To employ this theorem, we must verify a critical condition known as regularity to
employ this theorem. Through the p-adic comparison theorem, this condition amounts to saying
that the Hodge numbers of the de Rham realization of Mλ

n+1 are either 0 or 1. Relying on the
result in the author’s previous paper [32] (see also corollary 3.6), the regularity holds for cases
presented in Theorem 1.6.

Notice that the table of specific values of (n+ 1, k) in Theorem 1.6 is chosen so that the Hodge
numbers of Mk

n+1 are regular, see corollary 3.6. Recent developments in (potential) automorphy,
such as the work of Boxer–Calegari–Gee–Pilloni [5], offer promising avenues for further exploration.
These advancements may potentially extend the results of Theorem 1.6 to cases beyond the current
bounds on Hodge numbers.

1.3.3. Conjectures of Evans type. Let M be a motive attached to one of the sheaves in Theorem 1.7.
To prove the claimed conjectures of Evans type, it suffices to show that the `-adic realization of
M is modular, meaning it is isomorphic to ρf,`(h) for some modular forms f and some integer
h. Here, ρf,` represents the two-dimensional Galois representation of Gal(Q/Q) attached to f ,
constructed in [8, 11]. To prove this, we use an argument similar to that in [41, Thm. 4.6.1] to show
the modularity, which is originally due to Serre [34, §4.8] and can also be found in [25, Thm. 1.4.3].
The key ingredient of this argument is Serre’s modularity conjecture.

After establishing modularity, the remaining task is to determine the modular forms’ information
as explicitly as possible. We can begin by extracting information from the geometric properties of
M. In Section 4.1, we study the compatible family M` of Galois representations and analyze its

1This is the k-th iterated Thom–Sebastiani sum of the Laurent polynomial gn+1 =
∑n

j=1 yj + 1/
∏n

j=1 yj .
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conductor N . This provides information about the size and prime divisors of the modular form’s
level. Additionally, we use the calculation of Hodge numbers of the de Rham realization MdR from
[32] to determine the weight of the modular form.

However, due to a lack of information at some ”bad” primes or missing calculation of Hodge
numbers, we only get partial information on weights and the levels of those modular forms. We
turn to numerical results of traces of Frobenius for assistance in obtaining the Fourier coefficients
of the corresponding modular form using Sagemath [38]. Then we can determine the actual levels
of modular forms in proposition 5.6 and proposition 5.11, and the actual weights in proposition 5.9
and proposition 5.16. In particular, we get some new results on Hodge numbers that cannot be
obtained using methods from [32].

At last, we utilize the information from both geometry and computation to pinpoint the modular
form in the LMFDB database.

1.4. Organization of the article. In Section 2, we investigate the properties of Kloosterman
sheaves, primarily focusing on those appearing in Theorems 1.6 and 1.7, including their local
structures at 0 and ∞, the dimension formulas for their `-adic cohomologies. In Section 3, we
construct the motives attached to Kloosterman sheaves and explore properties of their de Rham
realizations, `-adic realizations, and other realizations in characteristic p > 0. In Section 4, we
first investigate the ramification properties of the Galois representations (Mλ

n+1)` as detailed in
Theorem 4.5, and Theorem 4.15. Then, we prove Theorem 1.6. In Section 5, we demonstrate
Theorem 1.7 by showing the modularity for each sheaf case by case in Propositions 5.5, 5.6, 5.9,
5.11, 5.14 and 5.16. In Appendix A, we outline the process of calculating moments of Kloosterman
sheaves.

Acknowledgement. This work is based on the author’s Ph.D. thesis, prepared at Centre de
Mathématiques Laurent Schwartz in École Polytechnique. He wants to thank his supervisors,
Javier Fresán and Claude Sabbah, for proposing this question and for many helpful discussions
and suggestions. He also wants to thank Lei Fu and Christian Sevenheck for their comments on a
previous version of this article and thank Jochen Heinloth, Gabriel Ribeiro, Bin Wang, Ping Xi,
and Daxin Xu for their valuable discussions.

2. Properties of Kloosterman sheaves

In this section, we primarily focus on Kloosterman sheaves appearing in Theorems 1.6 and 1.7.
After recalling some preliminaries about Weyl’s construction and `-adic sheaves, we give Kloosterman
sheaves geometrical descriptions in proposition 2.13. Then we describe their local structures at 0
and∞ in section 2.4 and section 2.5. At last, we give dimension formulas of the `-adic cohomologies
of Kloosterman sheaves in section 2.6.

2.1. Weyl’s construction. We recall some preliminaries from [19, §6, §15 & §17]. A partition
of an integer k is a sequence of nonnegative integers of the form µ := (µ1, µ2, . . . , µm) such that
µ1 ≥ µ2 · · · ≥ µm and

∑
i µi = k. For a partition of k, we can associate a Young diagram, such

that µi are the lengths of the i-th rows. For example, the Young diagram of the partition (3, 2, 1)
is shown in the following diagram.

1 2 3

4 5

6

For a partition µ of k, we define two elements aµ and bµ in Sk as follows. First, we label each block
in the Young diagram by indexes in {1, . . . , k}. We take Pµ := {σ ∈ Sk | σ preserves each row}
and Qµ := {τ ∈ Sk | τ preserves each column}. Let sign: Sk → {±1} be the sign character of Sk.
Then we define

aµ :=
∑
σ∈Pµ

σ, bµ :=
∑
τ∈Qµ

sign(τ)τ

and cµ = aµ · bµ in the group ring Z[Sk].
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Let K be a field of characteristic 0 and V = Kn+1 be the standard representation of SLn+1. The
group Sk acts on the tensor product V ⊗k by

σv1 ⊗ · · · ⊗ vk := vσ(1) ⊗ · · · ⊗ vσ(k).

Then we have the endofunctor Sµ of the category of finite-dimensional representations of SLn+1

defined by SµV := V ⊗k · cµ. For convenience, we also write

(2.1) (V ⊗k)Pµ×Qµ,1×sign := V ⊗k · cµ.

Let λ = (λ1, . . . , λn) be a sequence of nonnegative integers. Let V be the standard representation
Kn+1 equipped with the natural action of SLn+1 and Vλ be the unique irreducible subrepresentation
of the highest weight

∑
i λi(L1 + . . .+ Li) of

Symλ1V ⊗ Symλ2 ∧2 V ⊗ · · · ⊗ Symλn ∧n V.

In the case of SL3, the representation with the highest weight λ1L1+λ2(L1+L2) can be described
as

(2.2) ker(Symλ1V ⊗ Symλ2 ∧2 V
πλ1,λ2−−−−→ Symλ1−1V ⊗ Symλ2−1 ∧2 V ),

where πλ1,λ2
sends v1 · · · vλ1

⊗ w1 ⊗ wλ2
to

1

(λ1)!(λ2)!

∑
σ∈Sλ1

,τ∈Sλ2

< vσ(1), wτ(1) > ·vσ(2) · · · vσ(a1) ⊗ wτ(2) · · ·wτ(λ2)

where < ·, · > : V × ∧2V → K is the natural pairing.
In general, we can construct the representation Vλ using Schur functors as follows. Let

µ(λ) :=
( n∑
j=1

λj ,

n∑
j=2

λj , . . . , λn

)
,

Gλ := Pµ(λ) ×Qµ(λ).
(2.3)

By applying Sµ(λ) to V ⊗|λ|, the resulting representation is nothing but Vλ. More precisely, we have
Vλ = (V ⊗|λ|)Gλ,1×sign. For example, if λ = (k, 0, . . . , 0), then Pλ = Sk and Qλ is trivial. Hence,
Sλ(V ⊗k) = (V ⊗k)Sk = SymkV .

2.2. Some generalities on `-adic sheaves. Let p 6= ` be two prime numbers, q a power of
p, ι : Q` ↪→ C an embedding. We denote by E either the algebraic closure Q` of Q`, or a finite
extension of Q` inside Q`. By an `-adic sheaf on a connected separated Noetherian scheme X over
Fq, we mean a constructible E-sheaf on X.

2.2.1. Cohomologies of `-adic sheaves on curves. Let C be a geometrically connected smooth
projective curve over Fq. The `-adic cohomologies Hiét(CFq

,F ) of an `-adic sheaf F on C are
finite-dimensional E-vector spaces equipped with Frobenius actions.

Suppose that F is a lisse `-adic sheaf on an affine open subset U of C. We denote by ρF

the corresponding continuous `-adic representation of πét1 (U, ηU ), and by Ggeom the geometric
monodromy group of F , i.e., the Zariski closure of the image of πét1 (UFq

, ηU ) in GL(Fη) under ρF .
Then

H2
ét(UFq

,F ) = H0
ét,c(UFq

,F ) = 0,

H0
ét(UFq

,F ) = (F |ηU )
Ggeom , and H2

ét,c(UFq
,F ) = (F |ηU )Ggeom

(−1),

where (F |ηU )
Ggeom and (F |ηU )Ggeom

are the invariants and the coinvariants of F under the action
of Ggeom.
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2.2.2. The Grothendieck–Ogg–Shafarevich formula. For each closed point x ∈ |C|, we denote the
localization (resp. strict localization) of C at x (resp. x) by C(x) (resp. C(x)). The special points
and generic points of C(x) and C(x) are denoted by sx, ηx and sx, ηx respectively.

Let F be an `-adic sheaf on C which is lisse on an open subset U ⊂ C. We denote rk(F ) = rk(Fη),
rkx(F ) = rk(Fsx), and Swx(F ) = Sw(Fηx). Then the Euler characteristic χ(UFq

,F |U ) =∑2
i=0(−1)i+1 dimHiét(UFq

,F |U ) can be computed by the Grothendieck–Ogg–Shafarevich formula

(2.4) χ(UFq
,F |U ) =

(
2− 2g −

∑
x∈|C\U |

deg(x)
)
· rk(F )−

∑
x∈|C\U |

deg(x) · Swx(F ).

see [2, X. Théorème 7.1] or [26, (2.2)]. The sum on the right-hand side is a finite sum because
Swx(F ) = 0 whenever x ∈ U .

2.2.3. The middle `-adic cohomology. Let C be a curve as above, j : U ↪→ C an open immersion, and
F an `-adic cohomology on U . The middle `-adic cohomology of F is the image of the forgetting
support morphism

H1
ét,c(CFq

,F )→ H1
ét(CFq

,F ),

denoted by H1
ét,mid(CFq

,F ), which is identified with the `-adic cohomology of the (non-derived)
direct image j∗F . According to [24, 2.0,7], we have a long exact sequence

0→ (F |ηU )
Ggeom →

⊕
x∈|C\U |, x over x

(F |ηx)
Ix → H1

ét,c(Gm,Fp
,F )

→H1
ét(Gm,Fp

,F )→
⊕

x∈|C\U |, x over x

(F |ηx)Ix(−1)→ (F |ηU )Ggeom(−1)→ 0

(2.5)

where ηx are the generic point of the strict henselization of P1 at x, the groups Ix are the inertia
groups at x, (F |ηx)

Ix are the invariants of Ix and (F |ηx)Ix are the coinvariants of Ix.
Assume that F is pure of weight w. By the main theorem of Weil II [10, 3.3.1] and (2.5), we

conclude that
H1
ét,mid(UFq

,F ) ' grWw+1H
1
ét,c(UFq

,F ) ' grWw+1H
1
ét(UFq

,F ).

In particular, the dimension of the middle `-adic cohomology is given by

(2.6) dimH1
ét,c(UFq

,F )−
∑

x∈|C\U |, x over x

dim(F |ηx)
Ix + dimFGgeom .

2.3. Kloosterman sheaves. Let p and ` be two distinct prime numbers and Fq be the finite
field with q = pr elements. Let ζp be a primitive p-th root of unity ζp in Q`, and we denote by
E = Q`(ζp). We fix a nontrivial additive character ψp : Fp → E×, and denote by ψq the character
ψp◦TrFq/Fp

. The Artin-Schreier sheaf Lψq
is a lisse `-adic sheaf with coefficients in E on A1

Fq
, whose

trace function is given by ψq. We denote by Lψq(f) the inverse image f∗Lψq
of the Artin-Schreier

sheaf along a regular function f : X → A1
Fq

.
Consider the following diagram

(2.7)
Gn+1
m

Gm A1

π σ

where σ denotes the sum of coordinates and π denotes the product of coordinates. We define the
Kloosterman sheaf on Gm,Fq

by
(2.8) Kln+1 := Rnπ!σ

∗Lψq .

Deligne showed in [9, Sommes. Trig. Thm. 7.8] that Kln+1 is a lisse `-adic sheaf of rank n+ 1,
pure of weight n, tamely ramified at 0 with a single Jordan block, and is totally wildly ramified at
∞ with Swan conductor 1. Moreover, we have an isomorphism

Kl∨n+1 ' ι∗n+1Kln+1
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where Kl∨n+1 is the dual of Kln+1 and ιn+1 : Gm → Gm is defined by the multiplication of (−1)n+1.
In the generality of Kloosterman sheaves for reductive groups constructed in [20], one gets a

tensor functor (1.3) from the category of finite-dimensional representations of SLn+1 to the category
of `-adic local systems on Gm. If we take V as the standard representation Std of SLn+1 and
the symmetric power SymkStd, then KlSLn+1(V ) are Kln+1(

n
2 ) and KlSLn+1(V ) = SymkKln+1(

nk
2 )

respectively.
If we take V as the irreducible representation of the highest weight λ, we get

(
Kl

⊗|λ|
n+1

)Gλ,1×sign(n|λ|
2

)
.

For simplicity, we write

(2.9) Klλn+1 := KlSLn+1(Vλ)
(
−n|λ|2

)
.

Alternatively when n = 2, we use (2.2) to conclude that the sheaf KlSL3
(Vλ1,λ2

) is the kernel of

(2.10) Symλ1Kl3 ⊗ Symλ2(Kl3)
∨(λ1 + λ2)→ Symλ1−1Kl3 ⊗ Symλ2−1(Kl3)

∨(λ1 + λ2 − 2).

2.3.1. Geometric interpretations. Now, we describe Kloosterman sheaves (2.9) geometrically. Let
g : Gnm,Fp

→ A1
Fp

be the Laurent polynomial
∑n
i=1 yi +

1∏
i yi

and [n + 1] : Gm,Fp
→ Gm,Fp

the
(n+ 1)-th power map.

Lemma 2.11. We have an isomorphism of `-adic sheaves

[n+ 1]∗Kln+1 ' FTψp
(Rn−1g!E)|Gm

,

where FTψp is the Deligne-Fourier transform [26].

Proof. The proof is similar to that of [16, Prop. 2.10]. Let x1, . . . , xn+1 be the coordinates of Gn+1
m,Fp

in the diagram (2.7). We perform a change of variable z =
∏n
i=1 xi. Let j : Gm,Fp

→ A1
Fp

. Then we
can rewrite (2.8) as

Kln+1 = j∗R(prz)!Lψp

(∑n
i=1 xi+

z∏n
i=1

xi

)[n].
Let t be the coordinate of the source of the map [n+ 1]. Then

[n+ 1]∗Kln+1 'j∗R(prz)!Lψp

(∑n
i=1 xi+

tn+1∏n
i=1

xi

)[n] ' R(prt)!Lψp(tg)[n],(2.12)

where we performed a change of variable yi = xi/t in the last isomorphism.
By a calculation of the Deligne–Fourier transform, we obtain

FTψp
(Rg!E) 'R(pr2)!(pr∗1Rg!E ⊗Lψp(xt)[1])

'R(pr2)!(R(g × id)!pr
∗
1E ⊗Lψp(xt)[1])

'R(pr2)!R(g × id)!(pr
∗
1E ⊗Lψp(tg)[1])

'R(prt)∗Lψp(tg)[1],

where we used the base change theorem in the second isomorphism and the projection formula in
the third isomorphism. The morphisms in the above calculation are illustrated in the following
diagram.

Gnm × A1
t

Gnm A1
x × A1

t

A1
x A1

t

pr1 g×id

g pr1 pr2

We conclude from the above isomorphisms that [n+ 1]∗Kln+1 ' j∗ FTψp
(Rg!E)[n− 1]. �

Consider the torus Gn|λ|+1
m,Fp

with coordinates {xi,j | 1 ≤ i ≤ |λ|, 1 ≤ j ≤ n} and z. Let

f|λ| : G
n|λ|+1
m,Fp

→ A1
Fp

be the Laurent polynomial
∑|λ|
i=1

(∑n
j=1 xi,j+

z∏
j xi,j

)
and prz be the projection

from Gn|λ|+1
m,Fp

to its z-coordinate.
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Similarly, consider the torus Gn|λ|+1
m,Fp

with coordinates {xi,j | 1 ≤ i ≤ |λ|, 1 ≤ j ≤ n} and t.

We let f̃|λ| : G
n|λ|+1
m,Fp

→ A1
Fp

be the Laurent polynomial
∑|λ|
i=1

(∑n
j=1 xi,j +

tn+1∏
j xi,j

)
and prt be the

projection from Gn|λ|+1
m,Fp

to its t-coordinate.

Proposition 2.13. We have the isomorphism of `-adic sheaves

Klλn+1 ' j∗
(
Rn|λ|prz∗Lψp(f|λ|)

)Gλ,sign
n×signn+1

and
[n+ 1]∗Klλn+1 ' j∗

(
Rn|λ|prt∗Lψp(f̃|λ|)

)Gλ,sign
n×signn+1

,

where Gλ = Pµ(λ) ×Qµ(λ) is the group defined in (2.3), and the component (Gλ, signn × signn+1)

means taking the isotypic component with respect to
∑
σ∈Pµ(λ)

signn(σ)σ ·
∑
τ∈Qµ(λ)

signn+1(τ)τ.

Proof. By [26, (1.2.2.7)], the Deligne–Fourier transform interchanges tensor product and the exterior
product. Using lemma 2.11, we have

([n+ 1]∗Kln+1)
⊗|λ| 'j∗FTψp

(
((Rg!E)[n− 1])�|λ|

)
[|λ|]

'j∗FTψp

(
(Rg

�|λ|
! E)

)
[n|λ| − 1]

'j∗R(prt)!Lψp(t·g�|λ|)[n|λ| − 1]

'j∗R(prt)!Lψp(f̃|λ|)
[n|λ| − 1],

where we used the Künneth formula in the second isomorphism, and we performed a change of
variable xi,j = t · yi,j in the last isomorphism.

Notice that the Deligne–Fourier transform preserves the action of the symmetric group S|λ|.
However, the Künneth formula yields an extra sign character signn on the right-hand side. We get
the second isomorphism by taking the corresponding isotypic component on both sides.

As for the first isomorphism, similar to Remark 3.4, one has

Kl
⊗|λ|
n+1 '

(
[n+ 1]∗([n+ 1]∗Kln+1)

⊗|λ|)µn+1

'j∗
(
R(prt)!Lψp(f̃|λ|)

)µn+1

[n|λ| − 1]

'j∗R(prz)!Lψp(f|λ|)[n|λ| − 1].

At last, we add the corresponding isotypic components to both sides and get the first isomorphism.
�

2.4. The local structures of Kloosterman sheaves at 0. Let A1
(0) = {s0, η0} be the henseliza-

tion of A1
Fq

at 0. The inertial group I0 acts on the generic fiber (Kln+1)η0 . By a special case of [24,
7.0.7], the generic fiber V = (Kln+1)η0 is a tamely ramified `-adic representation of Gal(η0/η0) with
coefficients in E = Q`(ζp). The inertia group I0 acts on V unipotently by a single Jordan block.
More precisely, there exists a basis {v0, v1, . . . , vn} on which the nilpotent part of the monodromy
operator N : V → V (−1) and Frob0 act by

Frob0(vi) = qn−ivi and N(vi) = vi+1

for i = 0, . . . , n (for convenience, we let vn+1 = 0).

Remark 2.14. The local monodromy of Kln+1|η0 does not depend on the characteristic p of the
base field Fq. Therefore, the local monodromy of (Klλn+1)η0 = V ⊗|λ| · cλ is also independent of p.
Consequently, the dimension of the I0-invariants of (Klλn+1)η0 remains independent on p.

The dimension of the I0-invariants of (SymkKln+1)η0 are computed in [18, Thm 0.1].

Theorem 2.15 (Fu–Wan). As a Frobq-module, the I0-invariants (SymkKln+1)
I0
η0

is isomorphic to

bnk
2 c⊕

u=0

E(−u)
⊕
mk(u),
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where mk(u) are numbers characterized by the generating series,

∑
u=0

mk(u)x
u =

n+k∏
n+1

(1− xi) ·
k∏
2

(1− xi)−1.(2.16)

In particular, the dimension of (SymkKln+1)
I0
η0

is
∑bnk

2 c
u=0 mk(u).

To finish, we provide the formula of dimensions of I0-invariants of Kl
(2,1)
3 |η0 and Kl

(2,2)
3 |η0 .

Proposition 2.17. (1). As a Frobq-module Kl
(2,1)
3 |η0 is isomorphic to

7⊕
i=1

E(−i)
⊕ 6⊕

i=2

E(−i)
⊕ 5⊕

i=3

E(−i),

and the I0-invariants of Kl
(2,1)
3 |η0 is isomorphic to

E(−1)
⊕

E(−2)
⊕

E(−3).

(2). As a Frobq-module Kl
(2,2)
3 |η0 is isomorphic to

10⊕
i=2

E(−i)
⊕ 9⊕

i=3

E(−i)
⊕ 8⊕

i=4

E(−i)
⊕

2
⊕

E(−6),

and the I0-invariants of Kl
(2,2)
3 |η0 is isomorphic to

E(−2)
⊕

E(−3)
⊕

E(−4)
⊕

2
⊕

E(−6).

Proof. The proof is similar to that of 2.15. We provide the proof for (1), while the proof for (2) is
similar.

The nilpotent part N of monodromy operator on V = (Kl3)η0 can be enhanced to a Lie algebraic

representation ρ of sl2, such that ρ
(
0 0
1 0

)
= N . Similarly, the nilpotent part of the monodromy

operator on (SymkKl3)η0 can be viewed as an sl2-representation ρk with ρk

(0 0
1 0

)
= SymkN . By

the representation theory of sl2, we can decompose (SymkKl3)η0 into irreducible representations
of sl2 as

⊕b k
2 c
i=0 Sym

2k−2iE2. Moreover, each Sym2k−2iE2 is isomorphic to
⊕2k−2i

j=2i E(−j) as a
Frobq-module. As for the subspace of I0-invariants of (SymkKln+1)η0 , it is identified with the
kernel of SymkN , which is

⊕b k
2 c
i=0 E(−i).

Back to Kl
(2,1)
3 and we omit the Tate twists for now. Using the alternative description (2.10),

to determine the local structure of Kl
(2,1)
3 , it is sufficient to establish that of Sym2Kl3 ⊗Kl∨3 .. As

sl2-representations, we have isomorphisms

V = V ∨ = Sym2E2 and Sym2V = Sym4E2
⊕

E.

By the formula

SymaE2 ⊗ SymbE2 = Syma+bE2
⊕

Syma+b−2E2
⊕
· · ·
⊕

Sym|a−b|E2

from [19, Exe. 11.11], one concludes that

Sym2V ⊗ V ∨ = Sym6E2
⊕

Sym4E2
⊕

(Sym2E2)
⊕

2.

By removing one piece of Sym2E2 from Sym2V ⊗ V ∨ and adding back the Tate twists, we get the
expression of Kl

(2,1)
3 |η0 as well as that of Kl

(2,1)
3 |I0η0 . �

2.5. The local structures of Kloosterman sheaves at ∞.
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2.5.1. Notation. Let p, `, Fq, and E be as in Section 2.3. We fix a primitive (n+1)-th root of unity
ζ = ζn+1 in Fp.

(1). For multi-indices I ∈ Nn+1, we denote by CI =
∑
i Ii · ζi and mI =

∑n
i=0 i · Ii.

(2). Let v0, . . . , vn be a basis of En+1. We denote by σ = (01 · · ·n) ∈ Sn+1, acting on vi by
σvi := vσ(i). For a multi-index I ∈ Nn+1, we denote by vI = vI00 · · · vInn .
(a) Let d(k, n+ 1, p) be the cardinality of the set A0

k := {I | |I| = k, CI = 0}.
(b) We denote by a(k, n+ 1, p) the cardinality of the set of σ-orbits in A0

k.
(c) We denote by b(k, n+ 1, p) the cardinality of the E-vector space spanned by the set
{
∑
i(−1)IivσI | I ∈ A0

k}.
(d) We denote by d(k, n+1), a(k, n+1) and b(k, n+1) the generic values of d(k, n+1, p),

a(k, n+ 1, p) and b(k, n+ 1, p) as p varies respectively.
Fu and Wan partly determined the local structure of SymkKln+1 in [17, Thm. 2.5 & Thm. 3.1].

Theorem 2.18 (Fu–Wan). (1) If p - n + 1 and 2n | q − 1, we have an isomorphism of
Frobq-modules

(SymkKln+1 |η∞⊗Fq
)I∞

(
nk
2

)
'


E

⊕
a(k,n+1,p) 2 | n,

0 2 - nk,
E

⊕
b(k,n+1,p) 2 - n and 2 | k.

(2) The Swan conductor of SymkKln+1 at ∞ is 1
n+1

((
n+k
n

)
− d(k, n+ 1, p)

)
.

Similar to proposition 2.17, we study the local structures Kl
(2,1)
3 and Kl

(2,2)
3 at ∞.

Proposition 2.19. 1. The Swan conductor of Kl
(2,1)
3 at ∞ is 5 if p 6= 2, 3, 7, and is 4 if

p = 2, 7. The dimension of the invariants (Kl
(2,1)
3 |η∞)I∞ is 0 if p 6= 2, 7, and is 1 if

p = 2, 7.
2. The Swan conductor of Kl

(2,2)
3 at ∞ is 8 if p 6= 2, 3, and is 6 if p = 2. The dimension of

the invariants (Kl
(2,2)
3 |η∞)I∞ is 1 if p 6= 2, 3, and is 3 if p = 2.

Proof. The proof is similar to that of [17, Thm. 3.1]. We provide proof for the first statement and
omit the proof of the second one.
Swan conductors: According to the alternative description (2.10), it suffices to compute the Swan
conductors of Sym2Kl3 ⊗Kl∨3 and Kl3. When 3 6= p, after passing to a finite extension k of Fq, by
Lemma 1.5 in loc. cit., we have

[3]∗Kl3|η∞⊗k(1) = Lψk(3t)

⊕
Lψk(3ζ3t)

⊕
Lψk(3ζ3t),

where [3] : Gm → Gm is the cubic map and ζ3 is a primitive third root of unity in Fp.
Then we can get the local structure of [3]∗(Symλ1Kl3 ⊗ Symλ2Kl∨3 ) as

⊕N
i=1 Lψ(Cit) for some

N ∈ N and some Ci ∈ Fp. Since each Lψ(Cit) has Swan conductor 1 if Ci 6= 0, and has Swan
conductor 0 if Ci = 0, we conclude that

Sw∞([3]∗(Symλ1Kl3 ⊗ Symλ2Kl∨3 )) = {i | Ci 6= 0}.
By [24, 1.13.1], the Swan conductor of Symλ1Kl3 ⊗ Symλ2Kl∨3 is thus {i | Ci 6= 0}/3.

By direct computation, we obtain

[3]∗(Sym2Kl3 ⊗Kl∨3 |η∞⊗k)(3) = L
⊕

3
ψ(3t)

⊕
L

⊕
3

ψ(3ζ3t)

⊕
L

⊕
3

ψ(3ζ23 t)⊕
Lψ(−6t)

⊕
Lψ(−6ζ3t)

⊕
Lψ(−6ζ23 t)⊕

Lψ(3(2−ζ3)t)
⊕

Lψ(3ζ3(2−ζ3)t)
⊕

Lψ(3ζ23 (2−ζ3)t)⊕
Lψ(−3(2−ζ3)t)

⊕
Lψ(−3ζ3(2−ζ3)t)

⊕
Lψ(−3ζ23 (2−ζ3)t).

(2.20)

Depending on the value of p, the Swan conductor of Kl
(2,1)
3 can be computed as follows.

• If p 6= 2, 7, the numbers C appearing in components Lψ(Ct) in (2.20) are all nonzero. So
Sw∞(Kl

(2,1)
3 ) = rk(Sym2Kl3 ⊗Kl∨3 )/3− Sw∞(Kl3) = 6− 1 = 5.
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• If p = 2, then only 6, 6ζ3 and 6ζ23 are 0 in Fp. So Sw∞(Kl
(2,1)
3 ) = 4.

• If p = 7, we can take ζ3 = 2. So only 2− ζ3, ζ3(2− ζ3) and ζ23 (2− ζ3) are 0 in Fp. Hence,
Sw∞(Kl

(2,1)
3 ) = 4.

Dimension of the invariants: Let k be a finite extension of Fq containing ζ3. Consider
the extension k(t) = k(z)[t]/(t3 − z) of k(z), and the extension k(y) = k(t)[y]/(yq − y − t) of
k(t). The Galois group H = Gal(k(y)/k(t)) is isomorphic to Fq, and is a normal subgroup of
G = Gal(k(y)/k(z)). The quotient G/H is Gal(k(t)/k(z)) = Z/2Z.

For each a ∈ Fq, we denote by ga the element in H, such that ga · y = y − a. We choose an
element g ∈ G such that g · y = ζ3y. It follows that g3 = g0 = id and g 6∈ H.

Let W be a one-dimensional E-vector space and choose v0 as a basis. We define an action of H
on W by

ga · v0 = ψk(−3a)v0.
By the construction, as an H-representation, W is isomorphic to Lψk(3t). Then the induced
G-representation

V := IndGHW =

2⊕
i=0

giW,

is identified with [3]∗
(
Lψk(3t)

∣∣
η∞⊗k

)
. Let vi := giv0. The set {v0, v1, v2} form a basis of V , and

the action of H on vi is given by

ga · vi = gi · g−iga,µgi · v0 = gi · gζi3a · v0 = ψk(−3ζi3a)vi,

and the action of g on V is given by gvi = vi+1 where v3 = v0.
It follows that {vavb ⊗ v∨c | a ≤ b, 0 ≤ a, b, c ≤ 2} form a basis of Sym2V ⊗ V ∨ = Sym2Kl3 ⊗

Kl∨3 |η∞⊗k(3). To calculate the dimension of (Kl
(2,1)
3 |η∞)I∞ , it suffices to calculate the dimension

of the G-invariant subspace
(Sym2V ⊗ V ∨)G.

Let w =
∑
a,b,c αa,b,cvavb ⊗ v∨c , then

ga · w =
∑
a,b,c

ψk(−3(ζa3 + ζb3 − ζc3)a)αa,b,cvavb ⊗ v∨c ,

and
g · w =

∑
a,b,c

αa+1,b+1,c+1vavb ⊗ v∨c .

• If p 6= 2, 3, 7, then (ζa3 +ζ
b
3−ζc3) is never 0 in Fp. So there are no fixed vectors in Sym2V ⊗V ∨.

• If p = 2, then w =
∑2
i=0 vivi+1 ⊗ v∨i+2 spans (Sym2V ⊗ V ∨)G.

• If p = 7, then ζ3 = 2 in this case, and w =
∑2
i=0 vivi ⊗ v∨i+2 spans (Sym2V ⊗ V ∨)G.

In conclusion, the dimension of (Kl
(2,1)
3 |η∞)I∞ is 0 if p 6= 2, 3, 7 and is 1 if p = 2, 7. �

Remark 2.21. In Section 2.6.2, we will determine the local monodromy group of Kl3 at p = 3.
As consequence, we can prove that when p = 3 the Swan conductor of Kl

(2,1)
3 at ∞ is 5 and the

dimension of the invariants (Kl
(2,1)
3 |η∞)I∞ is 0. The argument is similar to those of proposition 2.32

and proposition 2.33.

2.6. The dimensions of the middle `-adic cohomology. In this subsection, our objective is to
calculate the dimension of the middle `-adic cohomology of SymkKln+1. Proposition 2.22 provides
the dimensions when p is coprime to n+ 1.

However, the case that p | n+1 remains mysterious because the local monodromy group of Kln+1

is still unknown. When n = 1, the dimension in the case of p = 2 was computed in [41, Cor. 4.3.5].
Following his method, we give a dimension formula when n = 2 and p = 3 in Section 2.6.2. The
key idea is to use the complete classification of finite subgroups of SL3 to find the local monodromy
group at ∞ of Kl3.
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2.6.1. When gcd(p, n+ 1) = 1.

Proposition 2.22. When p is coprime to n+ 1, the formula of the dimension of the middle `-adic
cohomology H1

ét,mid(Gm,Fp
,SymkKln+1) is

1

n+ 1

((
k + n

n

)
− d(k, n+ 1, p)

)
−

bnk
2 c∑

u=0

mk(u) + δ (k, n+ 1, p)−


a(k, n+ 1, p) 2 | n,
0 2 - nk,
b(k, n+ 1, p) else,

where the number δ (k, n+ 1, p) is

{
1 p = 2 and 2 | k,
0 else ,

the numbers mk(u) are defined in (2.16),

the numbers d(k, n+ 1, p), a(k, n+ 1, p), and b(k, n+ 1, p) are defined in Section 2.5.1.

Proof. By the long exact sequence (2.5), the dimension of H1
ét,mid(Gm,Fp

,SymkKln+1) is given by

H1
ét(Gm,Fp

,SymkKln+1) + dimSymkKl
Ggeom

n+1 − dimSymkKl
I0
n+1 − dimSymkKlI∞n+1.

By (2.4), dimH1
ét(Gm,Fp

,SymkKln+1) = Sw(SymkKln+1, which is calculated in theorem 2.18.
As for the invariants of the global monodromy group, it is E(nk/2) if p = 2 and n is even, and 0
otherwise by combining [24, Thm. 11.1] and [18, Lem. 0.2]. Next, the dimensions of the invariants
of the inertia groups at 0 and ∞ are summarized in theorem 2.15 and theorem 2.18 if p - n+ 1. At
last, combining everything together, we get the dimension of the middle cohomology. �

2.6.2. When n = 2 and p = 3.
The classification of finite subgroups of SL3. Let ζ9 be a primitive ninth root of unity, and we put
ω = ζ69 and ε = ζ49 . We define the following matrices in SL3(C)

S =

1 0 0
0 ω 0
0 0 ω2

 , T =

0 1 0
0 0 1
1 0 0

 ,

U =

ε 0 0
0 ε 0
0 0 εω

 , V =
1

ω − ω2

1 1 1
1 ω ω2

1 ω2 ω

 .

Let
G108 =< S, T, V >⊂ SL3,

G216 =< S, T, V, UV U−1 >⊂ SL3,

and
G648 =< S, T, V, U >⊂ PGL3.

We summarize the complete classification of solvable finite subgroups of SL3(C) from [29, Ch. XII]
in the following Theorem.

Theorem 2.23. If G is a finite solvable subgroup of SL3(C), it is isomorphic to one of the following
groups:

(A). Diagonal abelian groups,
(B). Groups arising from finite subgroups of GL2,
(C). Groups generated by groups of type (A) and the element T ,
(D). Groups generated by groups of type (C) and a matrix of the form

Qa,b,c :=

a 0 0
0 0 b
0 c 0


for some roots of unity satisfying abc = −1,

(E). The group G108,
(F). The group G216,
(G). The group G648.
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The local monodromy at ∞ when p = 3. Let j : Gm,F3 ↪→ P1
F3

be the inclusion. Restricting the
`-adic sheaf j∗Kl3 to η∞, we have a representation ρ : I∞ → SL3(Q`) of the inertia group at ∞.
Recall that Kl3 is totally wild at ∞ with Swan conductor 1. We want to determine the local
monodromy group of Kl3 at ∞, namely the finite solvable subgroup D0 = ρ(I∞) of SL3. The group
admits a lower numbering filtration {Di} terminating at DN , such that #D0/D1 is coprime to 3,
D1 is the 3-Sylow subgroup of D0, and Di/Di+1 are cyclic abelian of order 3 for i ≥ 1.

Theorem 2.24. The image of I∞ under ρ is isomorphic G108, whose lower numbering filtration is
given by

D0 BD1 =< S, T > BD2 = · · · = D4 =< ωI3 > B{1}.

Proof. By [24, 11.5.1], the local monodromy group D0 = ρ(∞) satisfies the following conditions:
(a). D0 acts on V = Kl3 |η∞ irreducibly,
(b). D0 admits no faithful Q`-linear representation of dimension smaller than 3,
The groups of type (A) are abelian groups. As irreducible representations of abelian groups

are all one-dimensional, the group D0 cannot be isomorphic to the groups of type (A) due to
condition (a). The groups of type (B) are groups induced from subgroups of GL2, which admit
faithful Q`-linear representations of dimension 2, which violates condition (b).

We establish the following lemma to eliminate more possibilities.

Lemma 2.25. Let V = Kl3 |η∞ . Then the Swan conductor of Sym3V is 2 + dim(Sym3V )I∞ .

Proof. As the symmetric power of the standard representation of SL3 is irreducible, the invariants
(Sym3Kl3)

SL3 (isomorphic to H0
ét(Gm,F3

,SymkKl3)) is 0. By the Grothendieck–Ogg–Shafarevich
formula, the dimension of H1

ét(Gm,F3
,Sym3Kl3) is equal to the Swan conductor of Sym3V =

(Sym3Kl3)η∞ , which is smaller or equal to
⌊
1
3 · rk Sym

3Kl3
⌋
= 3 because the breaks of Sym3Kl3 are

at most 1
3 .

Considering the long exact sequence (2.5), we have

0→ (Sym3Kl3)
SL3 → (Sym3Kl3 |η0)I0

⊕
(Sym3Kl3 |η∞)I∞

→ H1
ét,c(Gm,F3

,Sym3Kl3)→ H1
ét,mid(Gm,F3

,Sym3Kl3)→ 0.

Recalling that the dimension of (Sym3Kl3 |η0)I0 is 2 by Theorem 2.15, we deduce from the exact
sequence that

3 ≥ dimH1
ét(Gm,F3

,Sym3Kl3) = 2 + dimH1
ét,mid(Gm,F3

,Sym3Kl3) + dim(Sym3Kl3 |η∞)I∞ .

If the middle cohomology is nonzero, it is one-dimensional. By the computations in Appendix A.1.1,
we obtain

Tr(Frob | H1
ét,mid(Gm,F3

,Sym3Kl3)) = −(m3
3(3) + 1 + p2) = 0.

We arrive at a contradiction, as H1
ét,mid(Gm,F3

,Sym3Kl3) is pure of weight 10. Consequently, the
Swan conductor is 2 + dim(Sym3V )I∞ . �

Now assume that D0 is of type (C) or type (D). The representation Sym3V is the direct sum of
three subrepresentations V1 = span{v30 , v31 , v32}, V2 = span{v2i vj}i 6=j and V3 = span{v0v1v2}.

• If D0 is of type (C), the action of D0 has fixed vectors in each Vi. So dim(Sym3V )I∞ ≥ 3.
Applying Lemma 2.25, we find that

5 ≤ 2 + dim(Sym3V )I∞ = Sw(Sym3V ) ≤ 3.

• If D0 is of type (D), the operators T and Qa,b,c have no fixed vectors in each Vi. As a
result, the subspace of invariants (Sym3V )I∞ has dimension 0 and Vi are all totally wild.
Using Lemma 2.25, we deduce that

2 = Sw(Sym3V ) =

3∑
i=1

Sw(Vi) ≥ 3,

which is again not possible.
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The group D0 also cannot be isomorphic to groups of type (G) because G648 has no normal
subgroup of order 81, i.e., a normal 3-Sylow subgroup. The possible orders of normal subgroups of
G648 are 1, 3, 27, 54, 216 and 648 as determined by a group theoretic computation.

Now, the remaining cases are the groups of type (E) and (F).

Lemma 2.26. If D0 is of type (E) or (F), the Swan conductor of Sym6V is 6.

Proof. From the above discussion, the group D0 is either the group G108 or G216. In both cases,
the 3-Sylow subgroup D1 of D0 is generated by matrices S and T , of order 27. The group D1 has
only 3 subgroups of order 9. They are

H1 =< S, ωI3 >, H2 =< T, ωI3 > and H3 =< ST, ωI3 > .

Since V is totally wild, the last nontrivial group DN in the ramification filtration has no invariant
vectors, i.e. V DN = 0. Since S, ST and T have nonzero fixed vectors v1, v1 + w2v2 + v3 and
v1 + v2 + v3 respectively, the group DN is either Hi or < ωI3 >.

There exist nonnegative integers a, b, c such that the lower numbering filtration is of the form
D0 BD1 = · · · = Da B · · ·BDa+b B · · · = Da+b+c B {1},

where Da+1 = · · ·Da+b is H1, H2 or H3 if b 6= 0, and Da+b+1 = · · · = Da+b+c =< ωI3 > if c 6= 0.
We know that Sw(V ) = 1 and Sw(Sym3V ) = 2 or 3 according to (2.25). Then

1 = Sw(V ) =

∞∑
i=1

dimV − dimV Di

[D0 : Di]
=

1

[D0 : D1]

(
3 ∗ a+ 3 ∗ b

3
+ 3 ∗ c

9

)
and

2 or 3 = Sw(Sym3V ) =

∞∑
i=1

dimSym3V − dimSym3V Di

[D0 : Di]
=

1

[D0 : D1]

(
8 ∗ a+ 6 ∗ b

3
+ 0 ∗ c

9

)
.

If D0 = G108, the only possibility is (a, b, c) = (1, 0, 3). If D0 = G216, we have two possibilities
(a, b, c) = (2, 0, 6) or (1, 4, 3). In all cases, the number c is nonzero, and the last nontrivial group
DN = Da+b+c is < ωI3 > of order 3. Also, we obtain that Sw(Sym3V ) = 2 in all cases.

Now consider the Swan conductor of Sym6V = Sym6(Kl3)η∞ . In this case DN acts trivially on
Sym6V , so it suffices to compute dimSym6V D1 and dimSym6V Hi (if b 6= 0, Da+1 = Hi for some
i ∈ {1, 2, 3}). Let {vi}i=0,1,2 be the canonical basis of V and fi = v0 + ωiv1 + ω2iv2 for i = 0, 1, 2.
Then the actions of S and T on the basis {fi} are Sfi = fi+1 and Tfi = ω−ifi, where f3 := f0.

Consider the set of multi-indexes
A := {I = (I0, I1, I2) ∈ Z3

≥0 | |I| := I0 + I1 + I2 = 6},

on which σ = (123) ∈ S3 acts. For any vector f =
∑
I∈A aIf

I in SymkV , we have

Sf =
∑
I∈A

aσ−1If
I and Tf =

∑
I∈A

aIω
I2−I1f I .

So if f ∈ Sym6V D1 , i.e., Sf = Tf = f , the vector f is contained in the span of {
∑2
i=0 f

σI | I0 ≡
I1 ≡ I2 mod 3}. The dimension of the subspace of invariants (Sym3V )D1 is 4. Similarly, we can
compute that dimSym6V Hi = 10 for i ∈ {1, 2, 3}.

In conclusion, for (a, b, c) = (1, 0, 3), (2, 0, 6), and (1, 4, 3), the Swan conductors are
1

4

(
24 ∗ 1 + 18 ∗ 0 + 0 ∗ 3

9

)
=

1

8

(
24 ∗ 2 + 18 ∗ 0 + 0 ∗ 6

9

)
=

1

8

(
24 ∗ 1 + 18 ∗ 4

3
+ 0 ∗ 3

9

)
= 6.

�

Lemma 2.27. The dimension of (Sym6V )I∞ is 2 if D0 = G108 and is 1 if D0 = G216.

Proof. Let D0 = ρ(I∞) be either G108 or G216, which is a normal subgroup of G = G216 or
G = G648 respectively. Let a ∈ G/D0 be the class of an element a ∈ G, then

Tr(a | (SymkV )I∞) =
1

#D0

∑
g∈a·D0

Tr(g | V ).(2.28)
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In particular, if we let a = 1, we get∑
dim(SymkV )I∞xk =

1

#D0

∑
g∈D0

−1
Pg,V (x)

(2.29)

where Pg,V (x) = det(x ·g−1 | V ) is the characteristic polynomial of g. This can be easily computed
by Sagemath [38]2. Therefore, we deduce

P (x) = −1− x3 + x6 + x12 − x15 + x18

(−1 + x3)3(1 + x3)2(1 + x6)
if D0 = G108;

P̃ (x) = − 1− x3 + x9 − x15 + x18

(−1 + x3)3(1 + x3)2(1 + x6)
if D0 = G216.

(2.30)

In particular, their coefficients of t6 are 2 and 1, respectively. �

By Appendix A.1.1, we have

Tr(Frob | H1
ét(Gm,F3

,Sym6Kl3)) = −820.

Combining Theorem 2.15 and [24, Thm. 7.0.7], we deduce that

Tr(Frob | (Sym6Kl3)
I0) = 1 + p2 + p4 + p6 = 820.

Using the long exact sequence (2.5), we conclude that

Tr(Frob | H1
ét,mid(Gm,F3

,Sym6Kl3)) = −Tr(Frob | (Sym6Kl3)
I∞),(2.31)

and

dimH1
ét,mid(Gm,F3

,Sym6Kl3) = 2− dim(Sym6Kl3)
I∞ .

If D0 = G216, then both dim(Sym6Kl3)
I∞ and the middle cohomology are one-dimensional.

However, by (2.31), since (Sym3Kl3)
I∞ is pure of weight 12 and H1

ét,mid(Gm,F3
,Sym6Kl3) is pure

of weight 13, we get a contradiction.
In conclusion, the only possibility is D0 = G108. The ramification filtration of D0 is given in

terms of the triple (1, 0, 3) in the proof of Lemma 2.26. �

The dimension of the middle cohomology.

Proposition 2.32. When p = 3, the Swan conductor of the action of I∞ on (SymkKl3) |η∞ is
given by

Swan∞(SymkKl3) =

{
1
3

(
k+2
2

)
3 - k,

1
4

((
k+2
2

)
− d(k,3,3)+2

3

)
3 | k.

Proof. Recall that we denote V = Kl3 |η∞ . If 3 - k, then there is no fixed vector of SymkV under
the action of the group < ωI3 >. So the Swan conductor can be expressed as

∞∑
i=1

dimSymkV − 0

[D0 : Di]
=

dimSymkV

3
·
∑ 3

[D0 : Di]
=

1

3
·
(
k + 2

2

)
.

If 3 | k, the situation is similar to the case where k = 6. In this case D4 =< ωI3 > acts trivially
on SymkV . The dimension of SymkV D1 is computed in terms of invariant vectors under the action
of S and T . We again let {vi}i=0,1,2 be the canonical basis of V and fi = v0 + ωiv1 + ω2iv2 for
i = 0, 1, 2. If Sf = Tf = f , the vector f is contained in the span of the set {

∑2
i=0 f

σI | I0 ≡ I1 ≡ I2
mod 3}. The dimension of the invariants of S and T is exactly the number d(k,3,3)−2

3 +1 = d(k,3,3)+2
3 ,

where d(k, 3, 3) is introduced in Section 2.5.1. In conclusion, the Swan conductor is given by
∞∑
i=1

dimSymkV − dimSymkV Di

[D0 : Di]
=

1

4

((
k + 2

2

)
− d(k, 3, 3) + 2

3

)
.

�

2The code can be found on my web page.

https://yichenqin.net


18 YICHEN QIN

Proposition 2.33. The invariants of the inertia group are given by

(SymkV )I∞ = Q`(−k)
⊕
p̃k
⊕

Lθ(−k)
⊕
pk−p̃k ,

where θ is an unramified character which sends Frobenius to −1, and pk and p̃k are the k-th
coefficients of the generating series P (x) and P̃ (x) from (2.30). In particular, the dimension of
(SymkV )I∞ is pk.

Proof. Let φ be a lifting of the image of Frob∞ in GL3 and φ1 = 1
3φ in SL3. Since φ normalizes

D0 = G108, it is in the normalizer of G108 in SL3, i.e. G216. By direct computation, we find that
G216/D1 is the quaternion group Q8 and D0/D1 is a cyclic group. Notice that φ−1

1 gφ1 = g3 for
g ∈ Q8, which implies that φ1 6∈ D0. In (2.28) we let a = φ1. Then we obtain

Q(x) :=

∞∑
s=0

Tr(φ1 | (SymsV )I∞)xs =
1

108

∑
g∈φ1D0

−1
Pg,V (x)

.

As φ1 6∈ G108 and G216 = G108 ∪ φ1G108, the series Q(x) is nothing but

2P̃ (x)− P (x) = −1 + x3 − x6

(−1 + x3)(1 + x6)
.

Let pk and p̃k be the k-th coefficient of P (x) and P̃ (x) respectively.
Notice that φ21 ∈ G108, because [G216 : G108] = 2. Thus, the eigenvalues of φ1 acting on

(SymkV )I∞ are ±1. Assume that the dimensions of eigenspaces of 1 and −1 are λ1 and λ−1

respectively. Then λ1 + λ−1 = dim(SymkV )I∞ and λ1 − λ−1 = 2p̃k − pk. Therefore, we deduce the
desired decomposition Proposition 2.33. �

Corollary 2.34. When p = 3, the dimension of the moments are given by

dimH1
ét,mid(Gm,Fp

,SymkKl3) =


1
3

(
k+2
2

)
− bk+2

2 c 3 - k;
1
4

((
k+1
2

)
− d(k,3,3)+2

3

)
− bk+2

2 c − pk 3 | k.

3. Motives attached to Kloosterman moments

In this section, we aim to construct motives attached to moments of Kloosterman sheaves.
Our approach generalizes the construction presented in [16] by the Weyl construction. Next, we
investigate their de Rham realizations, `-adic realizations, and other realizations in characteristic
p > 0.

3.1. The construction of motives. Let n be an integer, Vλ the irreducible representation of the
highest weight

∑
i λi(L1 + . . .+ Li), and K ⊂ Gn|λ|m the hypersurface defined by the equation

(3.1)
|λ|∑
i=1

( n∑
j=1

xi,j +
1∏n

j=1 xi,j

)
= 0.

The group S|λ| × µn+1 acts on K by (σ × µ) · xi,j := µ · xσ(i),j . By a slight abuse of notation, we
denote Pλ and Qλ as the groups Pµ(λ) and Qµ(λ) from Section 2.1, and put Gλ = Pλ ×Qλ. Let
χn : sign

n × signn+1 be the character of Gλ and for each representation V of S|λ|, we denote the
isotypic component with respect to

(3.2) 1

#Gλ

∑
σ∈Pλ

sign(σ)nσ ·
∑
τ∈Qλ

sign(τ)n+1τ

by V Gλ,χn . Moreover, if a finite group H acts on V and commutes with S|λ|, then we denote the
isotypic component (V Gλ,χn)H as V Gλ×H,χn .

Definition 3.3. The motives attached to moments of Klλn+1 are the Nori motives over Q with
rational coefficients, of the form

Mλ
n+1 := grWn|λ|+1H

n|λ|−1
c (K)Gλ×µn+1,χn(−1),
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where W• is the (motivic) weight filtration [21, Thm. 10.2.5], and the exponent (Gλ × µn+1, χn)
means taking the isotypic component with respect to (3.2) and the action of µn+1 described above.

Remark 3.4. The action of ζn+1 ∈ µn+1 on K is not an automorphism defined over Q (only defined
over K = Q(ζn+1)). But taking the invariants of µn+1 on N := grWn|λ|+1H

n|λ|−1
c (K)Gλ,χn(−1) still

gives rise to a Nori motive over Q. In fact, one can see the Nori motive N as a Q-vector space
together with an action of the motivic Galois group Gmot(Q). We restrict N to a Nori motive NK
over K, i.e., a Q-vector space with an action of the motivic Galois group Gmot(K). Then one can
consider a Nori motive over K

Nµn+1 := im(NK
ϕ−→ NK),

where ϕ = 1
#µn+1

∑
ζ∈µn+1

ζ. One can check that Nµn+1 is stable under the action of Gal(K/Q).
By [21, Thm. 9.1.16], the motive Nµn+1 comes from a Nori motive over Q.

When the representation Vλ is the k-th symmetric power of the standard representation of SLn+1,
i.e., V(k,0,...,0), we recover the motive Mk

n+1 constructed in [16, (3.1)]. For simplicity, we use Mk
n+1

instead of M(k,0,...,0)
n+1 in this situation.

Proposition 3.5. The motives Mλ
n+1 are pure of weight n|λ| + 1. Moreover, they are equipped

with (−1)n|λ|+1-symmetric perfect pairings

Mλ
n+1 ×Mλ

n+1 → Q(−n|λ| − 1).

Proof. The motives grWn|λ|+1(H
n|λ|−1
c (K)(−1)) are pure of weight n|λ|+ 1 by construction. Addi-

tionally, they are equipped with (−1)n|λ|+1-symmetric perfect pairings, using a similar proof [16,
Thm. 3.2] for exponential mixed Hodge structures. Taking into account the isotypic components,
the motives Mλ

n+1 are also pure of weight n|λ|+ 1, and possess the induced (−1)n|λ|+1-symmetric
pairings. �

3.2. Realizations in characteristic 0.

3.2.1. The de Rham realizations. The de Rham realizations of Mλ
n+1 underlies a pure Hodge

structure of weight nk + 1. When n = 1 and λ = (k), the Hodge numbers of Mk
2 are computed in

[16, Thm. 1.8], which are either 0 or 1. In [32, Thm. 1.1 & Prop. 5.28], we computed the Hodge
numbers for more motives and expressed them using generating series. By a direct computation on
generating series in loc. cit., we deduce the following corollary.

Corollary 3.6. For pairs (n + 1, k) listed in the table in theorem 1.6, the Hodge numbers of
Mk
n+1,dR are either 0 or 1.

For M4
4,dR and M

(2,2)
3,dR, although we cannot compute their Hodge numbers directly, they still have

Hodge numbers either 0 or 1, see remark 5.10 and remark 5.17.

3.2.2. The `-adic realizations. For a prime `, the `-adic realization

(3.7) (Mλ
n+1)` := grWn|λ|+1H

n|λ|−1
ét,c (KQ,Q`)

Gλ×µn+1,χn(−1)

of Mλ
n+1 is a continuous `-adic representation of the absolute Galois group Gal(Q/Q), which is

pure of weight n|λ|+ 1 and is equipped with a (−1)n|λ|+1-symmetric pairing by Proposition 3.5.
Similar to the situation for motives, we indeed obtain a representation of Gal(Q/Q). As explained
in remark 3.4, although the action of µn+1 does not commute with Gal(Q/Q), the invariants of
µn+1 are stable under the action of Gal(Q/Q).

For the case of symmetric power moments of Kloosterman sums, we computed the dimensions of
(Mk

n+1)dR in [32, Cor. 2.16]. By the p-adic comparison theorem, we have the following proposition.

Proposition 3.8. The dimension of (Mk
n+1)` is

1

n+ 1

((
k + n

n

)
− d(k, n+ 1)

)
−

bnk
2 c∑

u=0

mk(u)−


a(k, n+ 1) 2 | n,
0 2 - nk,
b(k, n+ 1) else.
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where the numbers a(k, n+ 1), b(k, n+ 1) and d(k, n+ 1) are defined in Section 2.5.1, the numbers
mk(u) are defined in (2.16).

We will study the ramification properties of these Galois representations in Section 4.1.

3.3. Other realizations in characteristic p > 0.

3.3.1. The `-adic case.

Proposition 3.9. We have

Hiét,?(Gm,Fp
,Klλn+1) ' H

n|λ|+i
ét,?

(
Gn|λ|+1

m,Fp
,Lψ(f̃|λ|)

)Gλ×µn+1,χn3,

for i ∈ {0, 1, 2}.

Proof. We provide the proof for the usual cohomology here, and the properties of the cohomology
with compact support and the middle cohomology can be proved similarly.

Let prz be the projection from Gn|λ|m × Gm,z to the last factor Gm,z. The projection prt is
defined in a parallel way to prz. By the isomorphism

(
[n+ 1]∗Lψp(f̃|λ|)

)µn+1

' Lψp(f|λ|), we have
Klλn+1 ' ([n+ 1]∗[n+ 1]∗Klλn+1)

µn+1 . Then

Hiét(Gm,Fp
,Klλn+1) 'Hiét(Gm,Fp

, ([n+ 1]∗[n+ 1]∗Klλn+1)
µn+1)

'Hiét(Gm,Fp
, [n+ 1]∗Klλn+1)

µn+1

'Hiét
(
Gm,Fp

, [n+ 1]∗
(
Kl

⊗|λ|
n+1

)Gλ,χn
)µn+1

'
(
H
n|λ|+i
ét,?

(
Gn|λ|+1

m,Fp
,Lψ(f̃|λ|)

)Gλ,χn
)µn+1

,

where in the last isomorphism we used the geometric description of Klλn+1 from Proposition 2.13. �

Similar to the construction for relevant de Rham cohomologies in [16, (2.12)], we have the
following corollary.

Corollary 3.10. There is a (−1)n|λ|+1-symmetric perfect self-pairing on H1
ét,mid(Gm,Fp

,Klλn+1).

Theorem 3.11. Assume that n|λ| ≥ 3. We have isomorphisms of `-adic cohomologies

grWn|λ|+iH
i
ét,c(Gm,Fp

,Klλn+1) 'grWn|λ|+iH
n|λ|−2+i
ét,c (KFp

,Q`(ζp))Gλ×µn+1,χn(−1)

for i ∈ {0, 1, 2}, and

H1
ét,mid(Gm,Fp

,Klλn+1) 'grWn|λ|+1H
n|λ|−1
ét,c

(
KFp

,Q`(ζp)
)Gλ×µn+1,χn

(−1)

'grWn|λ|+1H
n|λ|+1
ét,KFp

(
Gn|λ|
m,Fp

,Q`(ζp)
)Gλ×µn+1,χn

,

which is also isomorphic to grWn|λ|+iH
n|λ|−1
ét

(
KFp

,Q`(ζp)
)Gλ×µn+1,χn

(−1) when K is smooth.

Proof. By performing a change of variables (t, xi,j) 7→ (t, xi,j/t), for i ∈ {0, 1}, we obtain

H
n|λ|+i
ét,c

(
Gn|λ|+1

m,Fp
,Lψ(f̃|λ|)

)
' H

n|λ|+i
ét,c

(
Gn|λ|+1

m,Fp
,Lψ(t·g�|λ|)

)
.

Then, considering the localization sequence for the triple(
(A1 ×Gn|λ|m , t · g�|λ|), (Gn|λ|+1

m , t · g�|λ|), (0×Gn|λ|m , 0)
)
,

3Here the action of µn+1 is induced by that on Gm,Fp(ζn+1)
, and we can understand the µn+1-invariants similarly

as in remark 3.4.
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we have exact sequences

H
n|λ|−1+i
ét,c

(
Gn|λ|
m,Fp

,Q(ζp)
)
→H

n|λ|+i
ét,c

(
Gn|λ|+1

m,Fp
,Lψp(t·g�|λ|)

)
→H

n|λ|+i
ét,c

(
A1

Fp
×Gn|λ|

m,Fp
,Lψp(t·g�|λ|)

)
→ H

n|λ|+i
ét,c

(
Gn|λ|
m,Fp

,Q`(ζp)
)
.

(3.12)

for i ∈ {0, 1, 2}. Next, we consider another triple

(3.13)
(
(A1 ×Gn|λ|m , t · g�k), (A1 × (Gn|λ|m \K), t · g�|λ|), (A1 ×K, 0)

)
.

Observe that for any r ≥ 0, we have

Hrét,c

(
A1

Fp
× (Gn|λ|m \K)Fp

,Lψp(t·g�|λ|)

)
=Hrét,c

(
A1

Fp
× (Gn|λ|m \K)Fp

,Lψp(t)

)
=
⊕
a+b=r

Haét,c

(
A1

Fp
,Lψp

)
⊗Hbét,c

(
(Gn|λ|m \K)Fp

,Q`(ζp)
)
= 0,

where we performed a change of variables in the first identity by (t, xi,j) 7→ (t · (g�|λ|)−1, xi,j). So,
by the long exact sequences associated with the triple (3.13), we deduce

H
n|λ|+i
ét,c

(
A1

Fp
×Gn|λ|

m,Fp
,Lψp(t·g�|λ|)

)
' H

n|λ|−2+i
ét,c

(
KFp

,Q`(ζp)
)
(−1).(3.14)

Now, we combine (3.12) and (3.14) to get exact sequences for i ∈ {0, 1, 2}. Then taking the
isotypic component of these sequences, we conclude

H
n|λ|−1+i
ét,c

(
Gn|λ|
m,Fp

,Q`(ζp)
)Gλ×µn+1,χn

→ Hiét,c(Gm,Fp
,Klλn+1)

→H
n|λ|−2+i
ét,c (KFp

,Q`(ζp))Gλ×µn+1,χn(−1)→ H
n|λ|+i
ét,c

(
Gn|λ|
m,Fp

,Q`(ζp)
)Gλ×µn+1,χn

(3.15)

by Proposition 3.9. By taking the graded quotient grWn|λ|+i on the sequence (3.15), we obtain by
analyzing the Frobenius weights that

grWn|λ|+iH
i
ét,c(Gm,Fp

,Klλn+1) ' grWn|λ|+iH
n|λ|−2+i
ét,c (KFp

,Q`(ζp))Gλ×µn+1,χn(−1).

For the usual cohomology, we use similar localization sequences to get

grWn|λ|+iH
i
ét(Gm,Fp

,Klλn+1) ' grWn|λ|+iH
n|λ|+i
ét,KFp

(
Gn|λ|
m,Fp

,Q`(ζp)
)Gλ×µn+1,χn

,

which is also isomorphic to grWn|λ|+iH
n|λ|−i
ét (KFp

,Q`(ζp))Gλ×µn+1,χn(−1) when K is smooth. �

From Theorem 3.11, the name of Mλ
n+1 is justified, because the L-functions of Mλ

n+1 coincide
with the L-functions attached to Kloosterman sheaves Klλn+1.

3.3.2. The p-adic case.
Bessel F -isocrystal. Let Qp be the algebraic closure of Qp, and we choose an element $ such that
$p−1 = −p. This gives rise to a unique nontrivial additive character ψ : Fp → Q×

p , satisfying
ψ(1) ≡ 1 + $ mod $2. The Dwork’s F -isocrystal L$ is a rank 1 connection d + $dz with
Frobenius structure exp($(zp − z)) on the overconvergent structure sheaf of A1 over K = Qp($).
We denote L$h as the inverse image of L$ along a regular function h : X → A1.

The Kloosterman crystal is an overconvergent F -isocrystal also defined using the diagram (2.7)
by

Kln+1 := Rπrig∗L$σ[n].

Similar to the Kloosterman sheaves for reductive groups, there are Bessel F -crystals for reductive
groups from [40]. The connection associated with G = SLn+1 and V = Vλ is

(
Kl

⊗|λ|
n+1

)Gλ,1×sign

(n|λ|2 ).

By abuse of notation, we denote by Klλn+1 the F -isocrystal
(
Kl⊗kn+1

)Gλ,1×sign

.
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Rigid cohomologies. Similar to the `-adic case, we have for ? ∈ {∅, c,mid}

H1
rig,?(Gm/K,Klλn+1) = H

n|λ|+1
rig,?

(
Gn|λ|+1
m ,L$f̃|λ|

)Gλ×µn+1,χn

[$].

Using the argument in [16, §3.2.2] by changing the isotypic component from (Sk × µn+1, χn) to
(Gλ × µn+1, χn), we obtain

H1
rig,mid(Gm/K,Klλn+1) ' grWn|λ|−1H

n|λ|−1
rig,c (K/K)Gλ×µn+1,χn(−1)[$],(3.16)

which is also isomorphic to grWn|λ|−1H
n|λ|−1
rig (K/K)Gλ×µn+1,χn(−1)[$] when K is smooth.

4. L-functions of Kloosterman sheaves

In this section, the main goal is to prove Theorem 1.6. First, we study the Galois representations
(Mλ

n+1)` to provide the necessary properties needed in proving Theorems 1.6 and 1.7. The general
case is covered in Theorem 4.5, while a more detailed analysis of the case of SymkKln+1 is provided
in Theorem 4.15. We also review essential properties of Deligne–Weil representations in Section 4.2.
Lastly, Theorem 1.6 is proven in Section 4.3.

4.1. Galois representations attached to Kloosterman sheaves.

4.1.1. A compactification. Let k be an integer and p a prime number, not dividing n + 1. The
Laurent polynomial g�kn+1 =

∑k
i=1

(∑n
j=1 yi,j +

1∏
j yi,j

)
on the torus Gnkm,Q defines a hypersurface

K. We select a toric compactification Xtor of Gnkm following the approach in[16, §4.3.2], see also [32,
§5.2.3]

We start with the pair
(
Gnkm,Q, g�kn+1

)
. Let M =

⊕
i,j Zyi,j be the lattice of monomials on Gnkm,Q

and N =
⊕

i,j Zei,j the dual lattice. We consider the toric compactification X of Gnkm,Q attached to
the simplicial fan F in NR generated by the rays

R≥0 ·
∑
i,j εi,jei,j

where εi,j ∈ {0,±1} and (εi,j)i,j 6= 0. Each simplicial cone of maximal dimension nk in F provides
an affine chart of X, which is isomorphic to Ank. On each chart, the function g�kn+1 has the same
structure. For example, we can consider the maximal cone generated by

γi0,j0 :=
∑

1≤i≤i0−1,1≤j≤n

ei,j +
∑

1≤j≤j0

ei0,j

for 1 ≤ i0 ≤ k and 1 ≤ j0 ≤ n, where the affine ring associated with the dual cone is the polynomial
ring Q[ui,j ] such that

ui,j =


yi,j/yi,j+1 1 ≤ j < n,

yi,j/yi+1,1 i < k, j = n,

yk,n i = k, j = n.

In this chart, we can rewrite g�kn+1 as g1/
(∏

1≤j≤n u
j
1,j ·

∏
2≤i≤k,j u

n
i,j

)
, where

g1 = 1 +

k−1∑
e=1

n∏
j=1

uj1,j ·
∏

2≤i≤e
1≤j≤n

uni,j ·
n∏
j=1

un−je+1,j +
∏

1≤j≤n

uj1,j ·
∏

2≤i≤k
1≤j≤n

uni,j · h

for a polynomial h. The toric variety X provides a compactification of (Gnkm , g�kn+1), where the
closure of the zero locus of g�kn+1, and X\Gnkm form a strict normal crossing divisor.

We take the Zariski closure of the hypersurface Z(g�kn+1) inside X, denoted by K. One can check
that

Z(g1) ∩ Z(u1,s) = ∅, Z(g1) ∩ Z(ur,s) = Z

(
1 +

r−1∑
e=1

n∏
j=1

uj1,j ·
∏

2≤i≤e
1≤j≤n

uni,j ·
n∏
j=1

un−je+1,j

)
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and

Z(∂g1/∂u1,1) ∩ Z(ur,s) = Z

(r−1∑
e=1

n∏
j=1

uj1,j ·
∏

2≤i≤e
1≤j≤n

uni,j ·
n∏
j=1

un−je+1,j/u1,1

)

for 1 ≤ s ≤ n and 2 ≤ r ≤ k. It follows that for 1 ≤ s ≤ n and 1 ≤ r ≤ k, we have
Z(g1)∩Z(∂g1/∂u1,1)∩Z(ur,s) = ∅. We deduce that K is smooth along the divisor Z

(∏
1≤i,j≤n ui,j

)
.

Moreover, one can check that Z
(∏

1≤i,j≤n ui,j
)
∩ K satisfies the strict normal crossing property.

As for K = K ∩ Gnkm , one can check that K is smooth if gcd(k, n + 1) = 1 and has isolated
singularities inside Gnkm if gcd(n+ 1, k) > 1. In the latter case, the singular locus Σ0 of K has only
finitely many Q-points or Fp-points, all of which are ordinary quadratic. We perform blow-ups of
Gnkm along the singular locus Σ0(Q) and denote by K′ the strict transform of K. For convenience,
we denote K′ as K in the case gcd(k, n+ 1) = 1. We denote by K′ the closure of K′ in BlΣ0

(X).

Lemma 4.1. Let F be either Q or Fp. Suppose that gcd(k, n+ 1) > 1, nk is even, and nk ≥ 4. If
F = Fp, we additionally assume p - n+ 1. Then we have

Hnk−1
ét,c (K′

F) = Hnk−1
ét,c (KF).

Proof. Let T be the preimage of Σ0 along the blow-up morphism K′ → K, which is a disjoint union
of quadrics. Then consider the commutative diagram of exact sequences

(4.2)
Hnk−2
ét (TF) Hnk−1

ét,c ((K′\T )F) Hnk−1
ét,c (K′

F) Hnk−1
ét (TF)

Hnk−2
ét ((Σ0)F) Hnk−1

ét,c ((K\Σ0)F) Hnk−1
ét,c (KF) Hnk−1

ét ((Σ0)F).

α

' β

γ

Under the assumption that nk ≥ 4, the cohomology Hnk−2
ét ((Σ0)F) and Hnk−1

ét ((Σ0)F) both vanish.
In particular, we find that γ is surjective if we extend the diagram by one more column to the right.

As nk is even, the cohomology Hnk−1
ét (TF) = 0, because T is disjoint union of quadrics. From

this we conclude that Hnk−1
ét,c (K′

F) = Hnk−1
ét,c (KF). �

4.1.2. The `-adic case in general. Let p 6= ` be two different primes, λ ∈ Nn be a sequence, and
ζn+1 be either an (n+ 1)-th primitive root of unity in Fp or Q. We adopt the notation from the
previous section and replace k with |λ|. We denote by Σ′(p) = Σ′(|λ|, n+ 1, p) the singular set of
K′

Fp
. Recall that each singular point x of K′

Fp
is of the form x = (xi,j)1≤i≤k, 1≤j≤n = (ζain+1)i,j for

some ai ∈ {0, 1, . . . , n}. The action of S|λ| × µn+1 on Σ′(p) is given by

(σ, ζan+1) · (xi,j) = (ζan+1 · xσ(i),j).

One can identify the S|λ|-orbits in Σ′(p) with the set of multi-indices

(4.3) {I ∈ Nn+1 | |I| = |λ|, CI = 0 in Fp, CI 6= 0 in C} = d(k, n+ 1, p)− d(k, n+ 1)

by sending x = (ζain+1)i,j to I such that Ij = #{i | ai = j}. On multi-indices, the actions of µn+1 is
given by ζn+1 · (I0, I1, . . . , In) = (In, I0, . . . , In−1).

Assume that p - n+1. The singular points in Σ′(p) are ordinary quadratic in the sense of [1, XII
1.1]. Let n|λ| = 2m+ 1 (resp. n|λ| = 2m+ 2) and we apply the Picard–Lefschetz formula [1, XV
3.4] to K′

Zp
→ Spec(Zp). For each x ∈ Σ′(p), there is a vanishing cycle class δx ∈ H

n|λ|−1
ét

(
K′

Qp

)
(m),

well-defined up to a sign. These vanishing cycle classes are orthogonal to each other and satisfy

< δx, δx >= (−1)m2 (resp. < δx, δx >= 0).

We fix a place of Q over p and denote by Ip the corresponding inertia group. To each element
σ ∈ Ip, the action on H

n|λ|−1
ét (K′

Q) is given by

(4.4) σ(v) =

{
v + (−1)m

∑
x∈Σ′(p)

ε(σ)−1
2 (v, δx)δx 2 - n|λ|,

v − (−1)m
∑
x∈Σ′(p) ε(σ)(v, δx)δx 2 | n|λ|,
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where ε is the character Ip � {±1} of order 2 if n|λ| odd, and is the fundamental tame character
Ip → lim←−n µ`n(Q`) if n|λ| is even. Moreover, we have an exact sequence

0→ H
n|λ|−1
ét (K′

Fp
)→ H

n|λ|−1
ét (K′

Q)
γ−→

∑
x∈Σ′(p)

Q`(m− n|λ|+ 1),

where γ is the sum of the intersections with the vanishing cycle classes δx.

Theorem 4.5. Suppose that gcd(n+ 1, |λ|) = 1 when n|λ| is odd.
(1) If p - n+ 1 and K′

Fp
is smooth, the Galois representation (Mλ

n+1)` is unramified at primes
p, and there is an isomorphism of Gal(Qp/Qp)-representations

(Mλ
n+1)`[ζp] ' H1

ét,mid(Gm,Fp
,Klλn+1).

(2) If p - n+ 1 and p 6= 2, the Galois representation (Mλ
n+1)` is at most tamely ramified.

Proof. We omit the coefficient Q` in the cohomology for simplicity. Let K(0)
= K′ and K(i) the

disjoint union of all i-fold intersections of distinct irreducible components of K′\K′ for i ≥ 1. Let F
be either Q or Fp. Consider the spectral sequence

(Ep,q1 )F = Hqét(K
(p)

F )⇒ Hp+qét,c (K
(p)
F ).(4.6)

For the case F = Q, since K(i) are proper smooth for all i, all morphisms in the E2-page are 0 for
the reason of weights. Therefore, the spectral sequence degenerates at the E2-page. It follows from
the spectral sequence that

grWn|λ|−1H
n|λ|−1
ét,c (K′

Q) = (E0,n|λ|−1
∞ )Q = ker(H

n|λ|−1
ét (K′

Q)→ H
n|λ|−1
ét (K(1)

Q ))

= im(H
n|λ|−1
ét,c (K′

Q)
α−→ H

n|λ|−1
ét (K′

Q)),

where the map α is the surjective edge map from the abutment H
n|λ|−1
ét,c (K′

Q) to E0,n|λ|−1
2 . Notice

that the above spectral sequence is equivariant with respect to the action of S|λ| × µn+1. Using the
isomorphism in Lemma 4.1, we conclude that

im(α)Gλ×µn+1,χn ' (Mλ
n+1)`(1).(4.7)

For the case that F = Fp, we conclude similarly G-equivariant isomorphisms

grWn|λ|−1H
n|λ|−1
ét,c (K′

Q) = grW
′

n|λ|−1(E
0,n|λ|−1
∞ )Fp

= grW
′

n|λ|−1im
(
H
n|λ|−1
ét,c (K′

Fp
)
β−→ H

n|λ|−1
ét (K′

Fp
)
)
,

where we denote by W ′ the (Frobenius) weight filtration to distinguish it from the weight filtration
W in characteristic 0. Recall that

H1
ét,mid(Gm,Klλn+1) ' grW

′

n|λ|+1H
n|λ|−1
ét,c (KFp

,Q`(ζ))Gλ×µn+1,χn(−1)

from Theorem 3.11. We obtain

grW
′

n|λ|+1im(β)Gλ×µn+1,χn(−1)[ζp] ' H1
ét,mid(Gm,Fp

,Klλn+1)(4.8)

Now we consider the G-equivariant commutative diagram with exact rows and columns

(4.9)

H
n|λ|−1
ét,c (K′

Fp
) H

n|λ|−1
ét,c (K′

Q)

0 H
n|λ|−1
ét (K′

Fp
) H

n|λ|−1
ét (K′

Q)
⊕

x∈Σ′(p) Q`(m− n|λ|+ 1),

H
n|λ|−1
ét (K(1)

Fp
) H

n|λ|−1
ét (K(1)

Q )

ιc

β α

ι γ

∼
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where the middle row is given by the Picard–Lefschetz formula (we assume p - n+ 1). Moreover,
taking into account (4.4), the representation H

n|λ|−1
ét (K′

Q) of Gal(Qp/Qp) is at most tamely ramified
when p 6= 2. We verified the second statement in the Theorem.

Notice that each class δx is a generator of H
n|λ|−1
{x} (K′

,RΨ(m)), with support {x}. So ∆ =⊕
Q`(−m)δx is contained in im(α). If we take the isotypic component with respect to (Gλ ×

µn+1, χn) on the second row, we have an exact sequence
(4.10)

0→ H
n|λ|−1
ét (K′

Fp
)Gλ×µn+1,χn

ι−→ H
n|λ|−1
ét (K′

Q)
Gλ×µn+1,χn

γ−→
(⊕
x∈Σ

Q`(m− n|λ|+ 1)
)Gλ×µn+1,χn

.

By a diagram-chasing argument, we get from (4.10) an inclusion

grW
′

n|λ|+1im(β)Gλ×µn+1,χn ↪→ im(α)Gλ×µn+1,χn .(4.11)

When K′ has good reduction at p, the variety K′
Fp

is smooth proper and the morphisms ι and ιc
in (4.9) are isomorphisms. So im(α) ' im(β) are pure of weight nk − 1 (W and W ′ coincide). By
(4.7) and (4.8), we get an isomorphism

(Mλ
n+1)`[ζp] ' H1

ét,mid(Gm,Fp
,Klλn+1)

of unramified Gal(Qp/Qp)-representations from (4.11). This verifies the first statement in the
Theorem. �

Remark 4.12. In the discussion above, we have omitted the case where p | n+1. In this situation,
the singular points of KFp

are isolated but not ordinary quadratic, rendering the Picard–Lefschetz
formula inapplicable in this case. Nevertheless, the vanishing cycles with respect to K′

Zp
→ Spec(Zp)

remain 0 if i 6= n|λ| − 1 [23, Cor. 2.10]. Based on the long exact sequence associated with vanishing
cycles [1, XIII (1.4.2.2)], the cospecialization morphism

H
n|λ|−1
ét (KFp

)→ H
n|λ|−1
ét (KQ)

is injective. Hence, the diagram

H
n|λ|−1
ét,c (KFp

) H
n|λ|−1
ét,c (KQ)

0 H
n|λ|−1
ét (KFp

) H
n|λ|−1
ét (KQ)

β α

induces an injective morphism

(4.13) grW
′

n|λ|+1im(β)Gλ×µn+1,χn(−1) ↪→ grWn|λ|+1H
n|λ|−1
ét,c (KQ)

Gλ×µn+1,χn(−1) = (Mλ
n+1)`.

As long as the dimensions of the source and the target of (4.13) are the same, the inclusion becomes
an isomorphism, implying that (Mλ

n+1)` is unramified at p. For instance, when n ≤ 2, p = n+1, and
p - k, the Galois representations attached to SymkKln+1 are unramified according to [41, Cor. 4.3.5]
and Corollary 2.34.

Let N(Vλ) and E(Vλ) be endomorphisms of Vλ, induced from N and E in n+1, as defined in [14,
§ 5]. Inspired by the above examples, we conjecture that:

Conjecture 4.14. The morphism (4.13) is an isomorphism when the matrices N(Vλ) + E(Vλ) is
invertible.

4.1.3. The `-adic case for SymkKln+1. Now we give a description in detail of Mλ
n+1,` for λ =

(k, 0, . . . , 0), i.e., the case for SymkKln+1. Let a(k, n + 1, p), a(k, n + 1), and δ(k, n + 1, p) be
numbers defined in Section 2.5.1 and Proposition 2.22.

Theorem 4.15. Let p be a prime different from ` such that p - n+ 1 and K′ has bad reductions at
p. Then
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(1) If nk is odd, gcd(k, n + 1) = 1, and p 6= 2, the Galois representation (Mk
n+1)` is tamely

ramified at p. For such primes, we have orthogonal decompositions (Mk
n+1)` = H

⊕
E as

Gal(Qp/Qp)-representations such that
• H[ζp] = H1

ét,mid(Gm,Fp
,SymkKln+1),

• E is generated by vanishing cycle classes.
(2) If n + 1 is a prime number, the Galois representation (Mk

n+1)` is tamely ramified at
p. For such primes, the inertia groups Ip ⊂ Gal(Qp/Qp) act unipotently on (Mk

n+1)`
such that (σ − 1)2 = 0 for any σ ∈ Ip. The image U of the nilpotent part of the
monodromy operator, denoted as N , is generated by vanishing cycle classes and has
dimension a(k, n+1, p)−a(k, n+1)−δ(k, n+1, p). With respect to the intersection pairing,
U is totally isotropic with orthogonal complement (Mk

n+1)
Ip
` . Moreover, the induced map

σ − 1: (Mk
n+1)` 7→ (Mk

n+1)`/U is zero.

Proof. For simplicity, we replace the exponent (Sk × µn+1, χn) by (G,χ). Since the Galois repre-
sentations are trivial or one-dimensional when nk ≤ 3, we assume that nk ≥ 4. When p - n + 1,
all singularities of KFp

are ordinary quadratic. Consider again the spectral sequence (4.6) and let

F • be the induced decreasing filtration on Hnk−1
ét,c (K′

F). Since K(i) are smooth proper over both
Q and Fp if i ≥ 1, we have the isomorphisms Haét(K

(i)

Fp
) ' Haét(K

(i)

Q ) for i ≥ 1 and any a ∈ Z. By

the Picard–Lefschetz formula, we have isomorphisms Haét(K
(i)

Fp
) ' Haét(K

(i)

Q ) for 0 ≤ a ≤ nk − 2. So
(Ei,nk−1−i

2 )Q ' (Ei,nk−i−1
2 )Fp

and

(4.16) (Ei,nk−i−1
2 )Fp

= (Ei,nk−i−1
∞ )Fp

= (Ei,nk−1−i
∞ )Q

for i ≥ 1. In other words, the dimensions of the graded pieces griFH
nk−1
ét,c (K′

Fp
) = griFH

nk−1
ét,c (K′

Q)

are independent of p when i ≥ 1.

Lemma 4.17. The graded quotient griFH
nk−1
ét,c (K′

Fp
)G,χ is pure of Frobenius weight nk − 1− i if

1 ≤ i ≤ nk − 1, and is mixed of weight nk − 1 and nk − 2 if i = 0. Moreover, the dimension of
grW

′

nk−2gr
0
FH

nk−1
ét,c (K′

Fp
)G,χ is

−dimH0(Gm,Fp
,SymkKln+1) +


a(k, n+ 1, p)− a(k, n+ 1) 2 | n,
0 2 - nk,
b(k, n+ 1, p)− b(k, n+ 1) 2 - n and 2 | k.

Proof. When 1 ≤ i ≤ nk − 1, the graded quotient griFH
nk−1
ét,c (K′

Fp
)G,χ = (Ei,nk−i−1

2 )G,χ is pure of
Frobenius weight nk − 1− i, and its dimension is independent of p. By the exact sequence (3.15),
we deduce for 0 ≤ i that

dimF 1+iHnk−1
ét,c (K′

Fp
)G,χ ≤ dimW ′

nk−2−iH
nk−1
ét,c (K′

Fp
)G,χ

= dimW ′
nk−iH

1
ét,c(Gm,Fp

,SymkKln+1).
(4.18)

By the long exact sequence (2.5), the dimensions of the graded pieces of the Frobenius weight
W ′ filtration on H1

ét,c(Gm,Fp
,SymkKln+1) can be calculated in terms of those of (SymkKln+1)

I0
η0

,
(SymkKln+1)

I∞
η∞

, and (SymkKln+1)
Ggeom . According to Theorems 2.15 and 2.18, as (SymkKln+1)

I∞
η∞

and (SymkKln+1)
Ggeom are pure of weight nk, we deduce that

dimW ′
nk−iH

1
ét,c(Gm,Fp

,SymkKln+1) = dimW ′
nk−i(Sym

kKln+1)
I0
η0
.

for 1 ≤ i. By Remark 2.14, we deduce that dimW ′
nk−1−jH

1
ét,c(Gm,Fp

,SymkKln+1) is independent
of p when j ≥ 0.

Now we replace p by a prime p′ at which K′ has a good reduction. In this case Hnk−1
ét,c (K′

Fp′
) '

Hnk−1
ét,c (K′

Q), and the Frobenius weight filtration W ′ on the left-hand side coincides with the weight
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filtration W on the right-hand side. In particular, we have

grW
′

nk−1−iH
nk−1
ét,c (K′

Fp′
)G,χ = griFH

nk−1
ét,c (K′

Fp′
)G,χ(4.19)

for all 0 ≤ i ≤ nk − 1. It follows that

dimF 1+iHnk−1
ét,c (K′

Fp′
)G,χ = dimW ′

nk−2−iH
nk−1
ét,c (K′

Fp′
)G,χ

=dimW ′
nk−iH

1
ét,c(Gm,Fp′

,SymkKln+1)
(4.20)

for 0 ≤ i. Hence, we conclude that (4.18) is an equality. In particular, each griFH
nk−1
ét,c (K′

Fp
)G,χ is

pure of Frobenius weight nk− 1− i if 1 ≤ i ≤ nk− 1, and gr0FH
nk−1
ét,c (K′

Fp
)G,χ is mixed of Frobenius

weight nk − 1 and nk − 2.
At last, using (4.20) we have

dimgrW
′

nk−2gr
0
FH

nk−1
ét,c (K′

Fp
)G,χ = dimgrW

′

nk−2H
nk−1
ét,c (K′

Fp
)G,χ − dimgrW

′

nk−2F
1Hnk−1

ét,c (K′
Fp
)G,χ

= dimgrW
′

nk H
1
ét,c(Gm,Fp

,SymkKln+1)− dimgrW
′

nk H
1
ét,c(Gm,Fp′

,SymkKln+1).

By (2.5), theorem 2.15 and theorem 2.18, the above dimension coincides with the claimed number.
�

(1) Assume that nk is odd and p - 2(n + 1). By (4.10), the representation (Mλ
n+1)` is tamely

ramified4. By (4.4), the short exact sequence

0 Hnk−1
ét (K′

Fp
) Hnk−1

ét (K′
Q)

⊕
x∈Σ′(p) Q`(−m) 0ι γ

splits, and Hnk−1
ét (K′

Fp
) is orthogonal to ∆ =

⊕
xQ`(−m)δx in Hnk−1

ét (K′
Fp
). By taking the (G,χ)-

isotypic component and by doing diagram-chasing argument in diagram (4.9), we deduce

im(α)G,χ = im(β)G,χ
⊕

∆G,χ.

Since nk is odd, the global monodromy group of Kln+1 is SPn+1, which implies that H0(Gm,Fp
,SymkKln+1) =

0. By Lemma 4.17 we have dimgrW
′

nk−2gr
0
FH

nk−1
ét,c (K′

Fp
)G,χ = 0. Hence, im(β)G,χ is pure of weight

nk − 1 and grW
′

n|λ|−1im(β)Gλ×µn+1,χn = im(β)Gλ×µn+1,χn . By (4.8), we can take H = im(β)G,χ and
E = ∆G,χ.
(2) Assume that n+1 is a prime number. Recall that nk = 2m+2 and ∆ =

∑
x∈Σ′(p) Q`(−m)δx is

the subspace of Hnk−1
ét (K′

Q) generated by vanishing cycle classes. By the Picard–Lefschetz formula,
the action of σ ∈ Ip acting on a cohomology class v ∈ Hnk−1

ét (KQ) is given by

σ(v) = v − (−1)m+1t`(σ)
∑

x∈Σ′(p)

< v, δx > δx,

which implies that (σ − 1)2 = 0. It follows that

(Mk
n+1)

Ip
` =

(
∆⊥)G,χ = im(α)G,χ ∩Hnk−1

ét (K′
Fp
) ⊃ im(β)G,χ,

and the induced map σ−1: (Mk
n+1)` 7→ (Mk

n+1)`/∆
G,χ is zero. It suffices to calculate the dimension

of U = ∆G,χ.

4(Mλ
n+1)` is possibly wildly ramified at p = 2 is because the character ε : I2 → {±1} has order 2.
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Consider the diagram
(4.21)

im(β)G,χ

0 im(α)G,χ ∩Hnk−1
ét (K′

Fp
) im(α)G,χ C

(
⊕

x∈Σ′(p) Q`(−m− 1))G,χ

i1

γ

i2

where C is the image of the map γ inside (
⊕

x∈Σ′(p) Q`(−m− 1))G,χ.

Lemma 4.22. In the diagram (4.21), the vertical map i1 is an isomorphism. If p = 2 and k is even,
the cokernel of the vertical map i2 is one-dimensional. Otherwise, the map i2 is an isomorphism.

Proof. By a diagram-chasing argument in (4.9), we conclude that im(β) = im(α) ∩ Hnk−1
ét (K′

Fp
).

So the map i1 is an isomorphism.
Consider the subsequent part of the diagram (4.9), i.e.,

Hnkét,c(K′
Fp
) Hnkét,c(K′

Q)

Hnk−1
ét (K′

Q)
⊕

x∈Σ′(p) Q`(−m− 1) Hnkét (K
′
Fp
) Hnkét (K

′
Q) 0

β′ α′

γ κ

where the two vertical maps are the surjective edge map from the abutment Hnkét,c(K′) to E0,nk. By
the same argument for the cohomology of degree nk − 1, we have im(α′) = grWnkH

nk
ét,c(K′

Q), and by
(3.15) an exact sequence

(4.23) Q`(ζp)(−1)G,χ → H2
ét,c(Gm,Sym

kKln+1)→ Hnkét,c(KFp
)G,χ(−1)[ζp]→ Q`(ζp)(−2)G,χ,

Assume that K′ has good reduction at p′. Consider the above diagram for p′, then im(β′) =

im(α′). Since H2
ét,c(Gm,Fp′

,SymkKln+1) = 0 and im(β′) is pure of Frobenius weight nk, we have
im(β′)G,χ = 0 by (4.23). This forces im(α′)G,χ = 0, which does not depend on the choice of p.

If p 6= 2 or k is odd, we have dimH2
ét,c(Gm,Fp

,SymkKln+1) = dimH0
ét(Gm,Fp

,SymkKln+1) = 0.
So (4.23) implies that im(β′) = 0. Hence, κ = 0, C = (

⊕
x∈Σ′(p) Q`(−m − 1))G,χ, and the two

vertical maps i1 and i2 are isomorphisms.
If p = 2 and k is even, the monodromy group of Kln+1 is either SOn+1 orG2. So (SymkKln+1)

Ggeom

is one-dimensional and we have dimH2
ét,c(Gm,Fp

,SymkKln+1) = dimH0
ét(Gm,Fp

,SymkKln+1) = 1.
By the property of the spectral sequence (4.6) and (4.23), we have

grWnk+2H
2
ét,c(Gm,Fp

,SymkKln+1) ' grWnk+2H
nk
ét,c(K′

Fp
)G,χ(−1) = im(β′)G,χ(−1).

So im(β′)G,χ is one-dimensional. Since im(α′)G,χ = 0, the morphism κ is surjective. Therefore, in
(4.21), the cokernel of i2 has dimension 1. �

Notice that ∆G,χ is contained in im(β)G,χ, because ∆G,χ ⊂
(
∆⊥)G,χ = im(α)G,χ∩Hnk−1

ét (K′
Fp
) =

im(β)G,χ. Since ∆G,χ is pure of Frobenius weight nk− 2, we deduce that ∆G,χ ⊂W ′
nk−2im(β). By

tproposition 3.8, the properties of the spectral sequence (4.6), and (4.7), we have

dim im(α)G,χ = dimHnk−1
ét,c (KQ)−

nk−1∑
i=1

dim(Ei,nk−1−i
∞ )G,χQ

=

(
k+n
n

)
− d(k, n+ 1)

n+ 1
− dim(SymkKln+1)

I0
η0
− a(k, n+ 1).
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As for the dimension of im(β)G,χ, by Proposition 2.22, (4.8), and Lemma 4.17, we deduce that

dim im(β)G,χ = dimgrW
′

nk−1im(β)G,χ + dimgrW
′

nk−2im(β)G,χ

=

(
k+n
n

)
− d(k, n+ 1, p)

n+ 1
− dim(SymkKln+1)

I0
η0
− a(k, n+ 1).

Notice that we have the identity d(k, n+ 1, p)− d(k, n+ 1) = (n+ 1)(a(k, n+ 1, p)− a(k, n+ 1)).
Then, we get from lemma 4.22 that

dimC = dim im(α)G,χ − dim im(β)G,χ − dimH2
ét,c(Gm,Fp

,SymkKln+1)

= a(k, n+ 1, p)− a(k, n+ 1)− dimH2
ét,c(Gm,Fp

,SymkKln+1)

= dimgrW
′

nk−2im(β)G,χ ≥ dim∆G,χ = dimC.

(4.24)

So ∆G,χ = grW
′

nk−2im(β)G,χ, and its dimension is a(k, n+1, p)−a(k, n+1)−dimH2
ét,c(Gm,Fp

,SymkKln+1).
�

Remark 4.25. We proved that when n+ 1 is a prime, the representation (Mk
n+1)` satisfies the

weight–monodromy conjecture, i.e., the associated Weil–Deligne representation is pure of weight
nk + 1, see Section 4.2.

Corollary 4.26. (1) If n+ 1 is a prime, the exponent of the Artin conductor of (Mk
n+1)` at

p is a(k, n+ 1, p)− a(k, n+ 1)− 1 if p = 2 and k even, and is a(k, n+ 1, p)− a(k, n+ 1)
otherwise.

(2) The exponent of the Artin conductor of {
(
M

(2,1)
3

)
`
}` at p is 1 if p = 2, 7, and is 0 if

p 6= 2, 3, 7.
(3) The exponent of the Artin conductor of {

(
M

(2,2)
3

)
`
}` at p is 1 if p = 2, and is 0 if p 6= 2, 3.

Proof. For the first case, the Artin conductor of (Mk
n+1)` at p is dimC = dim im(α)− dim im(β).

We get the exact formula by Lemma 4.17 and (4.24).
For the second and the third cases, if p 6= 3, we can perform the same argument in the above

theorem for {
(
M

(2,1)
3

)
`
}` and {

(
M

(2,2)
3

)
`
}`, together with the local behaviors of Kl

(2,1)
3 and Kl

(2,2)
3

from Propositions 2.17 and 2.19. If p = 3, the representation {
(
M

(2,1)
3

)
`
}` is unramified by an

analog of Corollary 2.34 and Remark 4.12. �

4.1.4. The p-adic case. We study the p-adic Galois representations (Mλ
n+1)p in this section.

Proposition 4.27. The p-adic representation (Mλ
n+1)p is de Rham. If p - n+ 1 and K′ has good

reduction at p. Then, the representation (Mλ
n+1)p is crystalline and there is an isomorphism of

Frobenius modules

H1
rig,mid(Gm/K,Klλn+1) ' ((Mλ

n+1)p ⊗Bcrys)
Gal(Qp/Qp) ⊗K.

Proof. As in Section 4.1.1, we let K′ be K if gcd(n+ 1, k) = 1 and the blow-up of K along singular
locus otherwise. By [4, §3.3(i) and §3.4], since the p-adic representation Hnk−1

ét (K′
Q,Qp) comes from

a proper smooth variety, it is de Rham. Then we conclude the first assertion by the fact that the
subquotient of a de Rham representation remains de Rham.

Now assume that gcd(p, n + 1) = 1 and K′ has good reduction at p. Then by the p-adic
comparison theorem, the representation Hnk−1

ét

(
K′

Qp

)
is crystalline. Therefore, as a subquotient of

Hnk−1
ét

(
K′

Qp

)
, the representation (Mλ

n+1)p remains crystalline.
Recall that we have an isomorphism

H1
rig,mid(Gm/K,Klλn+1) ' grWn|λ|−1H

n|λ|−1
rig,c (K/K)(−1)Gλ×µn+1,χλ [$]

from Section 3.3.2. We have results similar to those in Lemma 4.1 by simply replacing étale
cohomology with rigid cohomology everywhere. Consider the spectral sequence [27, Prop. 8.2.17
and 8.2.18(ii)]

Ei,j1 = Hjrig
(
K′(i)

Fp
/Qp

)
⇒ Hi+jrig,c(K

′
Fp
/Qp),
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and we denote by
α : Hn|λ|−1

(
K′

Fp
/Qp

)
→ Hn|λ|−1(K′(1)

Fp
/Qp)

the differential from E
0,n|λ|−1
1 to E1,n|λ|−1

1 . Since the varieties K
′(i) are smooth proper for all i ≥ 1,

the only contribution of weight n|λ| − 1 to the abutment of the spectral sequence comes from the
kernel of α. So

(4.28) grWn|λ|−1H
n|λ|−1
rig,c (K′

Fp
/Qp) ' grWn|λ|−1 kerα.

Then use the analog of (4.7), (4.28) and the p-adic comparison theorem, we get the isomorphism of
Frobenius modules

H1
rig,mid(Gm/K,Klλn+1) ' ((Mλ

n+1)p ⊗Bcrys)
Gal(Qp/Qp) ⊗K.

�

4.2. Generalities on Deligne–Weil representations. We recall the definition of Weil–Deligne
(or simply, WD-)representations from [36]. For each prime p, there is an exact sequence

1→ Ip → Gal(Qp/Qp) ' Ẑ→ Gal(Fp/Fp)→ 1,

where Ip is the inertia group at p. Moreover, there is a surjection t` : Ip → Z`. Let WQp be the
Weil group of Qp, i.e., the inverse image of the subgroup generated by Frobenius of Gal(Fp/Fp) ' Ẑ
in Gal(Qp/Qp) equipped with the induced topology.

A WD-representation on an E-vector space V (with discrete topology) is a pair (r,N), consisting
of a representation r : WQp

→ GL(V ) with open kernel, and an endomorphism N ∈ End(V ), such
that

r(φ)Nr(φ−1) = p−1N

for every lift φ ∈WQp
of Frobp. It is called unramified if N = 0 and r(Ip) = 1. It is called Frobenius

semisimple if r is semisimple. For a lift φ of Frobenius, we can decompose r(φ) = r(φ)ssr(φ)u =
r(φ)ur(φ)ss, where r(φ)ss is semisimple and r(φ)u is unipotent. Any WD-representation (r,N) has
a canonical Frobenius semisimplification (r,N)ss, by keeping N and r|Ip unchanged, and replacing
r(φ) by r(φ)ss.

If ` 6= p, there is a canonical way to attach a WD–representation WDp(ρ) to an `-adic repre-
sentation ρ of Gal(Qp,Qp) as follows. By Grothendieck’s quasi-unipotency theorem, there exists
an open subgroup H of Ip of finite index, and a unique nilpotent endomorphism N satisfying
r(σ) = exp(t`(σ)N) for all σ ∈ H. Let φ be a lift of Frobp and σ ∈ Ip, one sets

(4.29) r(φnσ) := ρ(φnσ) exp(t`(σ)N).

Notice that WDp(ρ) is unramified if and only if ρ(Ip) = 1, i.e., ρ is unramified.
A WD-representation (r,N) on Q` is called pure of weight w [3, p. 528] if there is an exhaustive

and separated ascending monodromy filtration Mi of V such that
• each FiV is invariant under r,
• for each lift φ of Frobp, all eigenvalues r(φm) on grMi V are Weil-numbers of weight m · i,
• the endomorphism N sends MiV into Mi−2V , and induces isomorphisms N j : grMw+jV '
grMw−jV for each j ≥ 1.

4.3. Potential automorphy. A weakly compatible system R = {ρ`} of n-dimensional `-adic
representations of Gal(Q/Q) over Q and unramified outside S is a family of continuous semisimple
representations

ρ` : Gal(Q/Q)→ GL(V`)

for each prime number `, with the following properties.
(1). If p 6∈ S, for all ` 6= p, the representation ρ` is unramified at p and the characteristic

polynomial of ρ`(Frobp) is a polynomial with coefficients in Q, independent of the choice of
`,

(2). Each representation ρ` is de Rham at `, and is crystalline if ` 6∈ S,
(3). The Hodge–Tate number of ρ` is independent of `.
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To a weakly compatible system of `-adic representations, we can attach a partial L-function

LS(R, s) =
∏
p 6∈S

det(1− ρ`(Frobp)p−s)−1.

Moreover, we call R strictly compatible if for each p, there exists a WD–representation WDp(R) of
WQp

over Q such that for each ` 6= p and each ι : Q ↪→ Q`, the push forward ιWDp(R) is isomorphic
to WDp(ρ`)

ss. To a strictly compatible family R, we can attach an L-function

L(R, s) =
∏
p

det
(
1− Frobp · p−s |WDp(R)Ip,N=0

)−1
,

which differs from LS(R, s) only by finitely many Euler factors at p ∈ S. To describe the complete
L-function, we still need the gamma factor at ∞. Serre conjectured the form of the gamma factors
at infinity of the complete L-function for a pure motive over Q in [33, § 3]. We denote by L∞(R, s)
the gamma factor associated with R.

Theorem 4.30 ([30, Thm. A & Cor. 2.2]). Let R = {ρ`} be a weakly compatible system of n-
dimensional `-adic representations of Gal(Q/Q) defined over Q and unramified outside S. Suppose
that {ρ`} satisfies the following properties.

(1) (Purity) There exists an integer w such that, for each prime p /∈ S, the roots of the common
characteristic polynomial of ρ`(Frobp) are Weil numbers of weight w.

(2) (Regularity) The representation ρ` has n distinct Hodge–Tate weights.
(3) (Odd essential self-duality) Either each ρ` factors through a map to GOn(Q`) with even

similitude character, or each ρ` factors through a map to GSpn(Q`) with odd similitude
character. Moreover, in either case, similitude characters form a weakly compatible system.

Then there exists a finite Galois totally real extension F/Q, over which all the ρ` become automorphic.
Additionally, for any distinct primes p and `, the WD-representation WDp(R) of Gal(Qp/Qp)
associated with ρ` is pure of weight w. Furthermore, the completed L-function

Λ(R, s) = L∞(R, s) · L(R, s)

satisfies the functional equation Λ(R, s) = ε(R, s)Λ(R∨, 1− s).

We can now prove Theorem 1.6 using the above theorem of Patrikis–Taylor.

Proof of Theorem 1.6. Assume that k ≥ 3 because by Proposition 3.8 we have dimMk
n+1 = 0 when

k ≤ 2. Let S(k, n + 1) be the set of primes p such that either p | n + 1 or K′
Fp

is not smooth.
We start with verifying that the family of semisimplifications of `-adic Galois representations
R = {(Mk

n+1)
ss
` } is weakly compatible. Indeed, it is sufficient to demonstrate that the three

conditions of weakly compatible systems are satisfied for {(Mk
n+1)`}. The first two conditions are

readily derived from Theorem 4.5 and Proposition 4.27. Regarding the third condition, we fix an
embedding Qp ↪→ C and utilize the p-adic comparison theorem to obtain a filtered isomorphism as
follows :(
(Mk

n+1)p ⊗BdR

)Gal(Qp/Qp)

⊗ C =
(
grWnk+1H

nk−1
ét,c (KQp

,Qp)Sk×µn+1,χn(−1)⊗BdR

)Gal(Qp/Qp)

⊗ C

= grWnk+1H
nk−1
ét,c (KQp

,Qp)Sk×µn+1,χn(−1)⊗ C ' (Mk
n+1)dR,

Consequently, the Hodge–Tate numbers are independent of `.
In order to apply the theorem 4.30 to the weakly compatible family R, it is necessary to verify

the conditions stated in theorem 4.30. The purity is satisfied because the Galois representations
(Mk

n+1)`, as well as their semisimplifications, are pure of weight nk + 1. The regularity condition
is also fulfilled for pairs (n+ 1, k) presented in Theorem 1.6, as the multiplicities of Hodge–Tate
numbers of (Mk

n+1)` (and their semisimplifications) are either 0 or 1, by Corollary 3.6 and the
comparison isomorphism above.

The odd essential self-duality for R can be verified as follows. The perfect pairing, as described
in Proposition 3.5, indicates that the representations (Mk

n+1)` factor through either GSP((Mk
n+1)`)

or GSO((Mk
n+1)`), with a similitude character χnk+1

cyc . By selecting a generator of Q`(−nk − 1),
we can regard the perfect pairing as a compatible nondegenerate bilinear form on the module
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(Mk
n+1)` over the group ring of Gal(Q/Q), with the involution g 7→ χ−nk−1

cyc (g)g−1. According to
[35, Thm. 4.2.1], the semisimplification also factors through either GSP or GSO, with the same
character. This establishes the odd essential self-duality for R.

According to theorem 4.30, the weakly compatible family R is potentially automorphic, and
the partial L-function LS(R, s) extends to a meromorphic function on C satisfying a functional
equation. Observe that the partial L-function of R agrees with LS(k, n+1; s), as their local factors
coincide for each p 6∈ S(k, n + 1), which can be verified by applying Theorem 4.15, remark 4.25,
and [16, Lem. 5.40]. As a result, the partial L-function LS(k, n + 1; s) can be completed to
Λk(s) = L∞(R, s) · L (R, s) , which extends meromorphically to the whole complex plane and
satisfies the claimed functional equation in theorem 1.6. �

5. Conjectures of Evans type

In this section, we prove Theorem 1.7 with the help of the database LMFDB [37]. Recall that a
modular form will refer to a normalized holomorphic cuspidal Hecke eigenform.

5.1. Modularity.

5.1.1. Galois representations attached to modular forms. One can attach two-dimensional Galois
representations to modular forms f ∈ Sk(Γ1(N)) of weight k, as constructed in [8, 11]. More
precisely, let N and k be positive integers, f ∈ Sk(Γ(N)) a modular form, and Kf = Q(af (p)) the
number field generated by the Fourier coefficients of f . Then for any place λ of Kf over a prime
` - N , there exists a continuous odd irreducible Galois representation

ρf,λ : Gal(Q/Q)→ GL2(Kf,λ),(5.1)

unramified if p - N , such that for p - N`, the trace of the arithmetic Frobenius Frob−1
p at p is ap(f).

Notice that ρf,λ has conductor N and Hodge–Tate weight (0, k − 1). Moreover, it is odd, i.e.,
the value of det(ρf,λ) at the complex conjugation is −1.

Given such a ρf,λ, we denote by ρf,λ : Gal(Q/Q)→ GL2(F`) its mod ` reduction. It is obtained
by choosing a Galois stable Oλ-lattice in K2

f,λ and reducing modulo the maximal ideal of Oλ,
where Oλ is the ring of integers of Kλ. Although ρf,λ depends on the choice of the lattice, its
semisimplification does not.

5.1.2. A special case of modularity. We recall a weaker version of a theorem by Kisin [25, Thm. 1.4.3],
which says that the `-adic Galois representations associated with certain two-dimensional motives
are modular, i.e., isomorphic to one ρf,` in (5.1). The argument is originally due to Serre [34, §4.8],
with similar arguments also appearing in [41, Thm. 4.6.1].

Theorem 5.2. Let M be a pure motive of dimension 2 over Q with coefficients in Q. Assume that
the nonzero Hodge numbers of the de Rham realization of M are hr,s = hs,r = 1 for some 0 ≤ r < s,
and the `-adic Galois representations M` are odd and absolutely irreducible. Then for some N ≥ 1
and some Dirichlet character ε : Z/NZ× → C×, there exists a modular form f ∈ Ss−r+1(Γ0(N), ε)
such that ρf,` ' M`(r).

Remark 5.3. By (4.8.8) and the last paragraph in p. 216 of [34], the 2-adic and 3-adic valuation
of N are at most 8 and 5 respectively.

5.2. Conjectures of Evans type. In this subsection, we prove Theorem 1.7 by considering each
case individually.

5.2.1. ε-factors. In order to apply Theorem 5.2 for motives attached to Kloosterman sheaves, it
is necessary to check that the associated Galois representations are odd. This is ensured by the
following Proposition and Chebotarev’s density theorem.

Proposition 5.4. If n|λ| is even, then

ε(P1
Fp
, j∗Klλn+1) = p

n|λ|+1
2 ·dimH1

ét,mid

(
Gm,Fp ,Klλn+1

)
.
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Proof. By applying Corollary 3.10, we find that the middle `-adic cohomology H1
ét,mid

(
Gm,Fp

,Klλn+1

)
is a symplectic representation of Gal(Fp/Fp). Consequently, the determinant of Frobp is a power
of p. Taking into consideration both the dimension and the weight of H1

ét,mid

(
Gm,Fp

,Klλn+1

)
, we

deduce that
ε
(
P1
Fp
, j∗Klλn+1

)
= det

(
−Frobp,H1

ét

(
P1
Fp
, j∗Klλn+1

))
= det

(
Frobp,H

1
ét,mid

(
Gm,Fp

,Klλn+1

))
= p

n|λ|+1
2 dimH1

ét,mid

(
Gm,Fp ,Klλn+1

)
.

�

5.2.2. Sym4Kl3. The motive M4
3 is defined over Q, pure of weight 9 and equipped with a skew-

symmetric perfect pairing, as described in Proposition 3.5. It has dimension 2, and the Hodge
numbers hp,9−p of its de Rham realization are 1 if p = 3 or 6, and 0 otherwise by [32, Thm. 1.1].
Our goal is to show that the compatible system of Galois representations {(M4

3)`(6)} is modular.

Proposition 5.5. There exists a (unique) modular form f in S4(Γ0(14)), such that for each prime
p 6∈ {2, 7}, the Fourier coefficient ap(f) satisfies

af (p) = −
1

p3
(m4

3(p) + 1 + p2 + p4),

where m4
3(p) is the symmetric power moment of Sym4Kl3. In particular, the label of this modular

form in the database LMFDB is 14.4.a.b.

Proof. By (4.3), we find that the hypersurface KFp
in (3.1) is smooth if the number d(4, 3, p)

in section 2.5.1 is 0. According to Theorem 4.5, we find that the `-adic representation (M4
3)`

is unramified at p 6= 2, 3, 7. As noted in Remark 4.12, the `-adic representation (M4
3)` is also

unramified at p = 3, because the middle `-adic cohomology H1
ét,mid

(
Gm,F3

,Sym4Kl3
)

has dimension
2 by Corollary 2.34. Additionally, Corollary 4.26 tells us that the conductor of the compatible
family {(M4

3)`}` is 14.
Since the motive M4

3 is pure of weight 9 and its nonzero Hodge numbers are given by h3,6 =
h6,3 = 1, the Hodge–Tate weight of (M4

3)`(6) is (0, 3) with multiplicity 1 by the p-adic comparison
theorem.

According to Proposition 5.4 and Chebotarev density theorem, we find that the determinant
det
(
(M4

3)`(6)
)

is equal to χ3
cyc,`. As χcyc,`(c) = −1, the representation (M4

3)`(6) is odd. Thus,
{(M4

3)`(6)} is modular according to Theorem 5.2.
By the exact sequence (2.5) and Theorems 2.15 and 2.18, we deduce that

Tr(Frobp | (M4
3)`) = −(m4

3(p) + 1 + p+ p2).

It follows that for any p 6∈ {2, 7, `},

af (p) = Tr(Frob−1
p | (M4

3)`(6)) = −
1

p3
(m4

3(p) + 1 + p+ p2).

Now, the remaining task is to identify the modular form. The corresponding modular form’s
weight and level are k = 4 and Nf = 14. By computing the Fourier coefficient af (3), as detailed in
Appendix A.1.1, we find that this modular form f is labeled 14.4.a.b in the database LMFDB. �

5.2.3. Sym3Kl4. The motive M3
4 is defined over Q, pure of weight 10, and equipped with a symmetric

perfect pairing. It has dimension 2, and the nonzero Hodge numbers hp,10−p of its de Rham
realization are 1 if p = 4 or 6 by [32, Thm. 1.1]. We aim to demonstrate that the compatible family
of Galois representations {(M3

4)`(6)} is modular.

Proposition 5.6. There exists a (unique) modular form f in S3

(
Γ0(15),

( ·
15

))
with complex

multiplication, such that for each prime p 6∈ {2, 5}, the Fourier coefficient af (p) satisfies

af (p) = −
( p
15

) 1

p4
(m3

4(p) + 1 + p2 + p3).

Here m3
4(p) is the symmetric power moment of Sym3Kl4. In particular, the label of the corresponding

modular form is 15.3.d.a in the database LMFDB.
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Proof. Based on (4.3), Theorem 4.5, and Theorem 4.15, we know that (M3
4)` is unramified if p 6=

2, 3, 5, and tamely ramified if p = 3, 5. Moreover, applying Proposition 2.22, we obtain the dimension
of the middle `-adic cohomologies of Sym3Kl4 at p 6= 2. Hence, (M3

4)
Ip
` ' H1

ét,mid

(
Gm,Fp

,Sym3Kl4
)

has dimension 1 when p = 3 or 5. This implies that the conductor N of {(M3
4)`} is of the form

2s · 15 for some s ∈ Z≥0.

Lemma 5.7. For each ` 6= 2, the representation (M3
4)` is unramified at p = 2. In particular, the

conductor N of {(M3
4)`} is 15.

Proof. At p = 2, the Swan conductor of Sym3Kl4 is at most 5. Since the monodromy group of
Kl4 is Sp4 and the symmetric power of standard representation of SP4 remains irreducible, the
0-th cohomology H0

ét(Gm,Fp
,Sym3Kl4) vanishes. By the exact sequence (2.5) and Grothendieck–

Ogg–Shafarevich formula, we deduce that

dimH1
ét,mid

(
Gm,Fp

,Sym3Kl4
)
= Sw(Sym3Kl4)− 3− dim(Sym3Kl4)

I∞ .

As a result, we find that 3 ≤ Sw(Sym3Kl4) ≤ 5.
By Appendix A.2.1, the trace of Frobenius at p = 2 on H1

ét,mid

(
Gm,Fp

,Sym3Kl4
)

is

−(m3
4(p) + 1 + p2 + p3 +Tr(Frobp | (Sym3Kl4)

I∞)) = −16− Tr(Frobp | (Sym3Kl4)
I∞).

We proceed by examining each possible value of Sw(Sym3Kl4) as follows.
• If Sw(Sym3Kl4) = 5, the sheaf Sym3Kl4 has only one slope (equal to 1/4) at ∞, which

implies that (Sym3Kl4)
I∞ = 0. So the dimension of the middle `-adic cohomology is 2. As

a result, the representation (M3
4)` is unramified at p = 2.

• If Sw(Sym3Kl4) = 4, then dim(Sym3Kl4)
I∞ ≤ 1.

– If dim(Sym3Kl4)
I∞ = 1, the middle `-adic cohomology of Sym3Kl4 is 0. The trace of

Frob2 on H1
ét,mid

(
Gm,Fp

,Sym3Kl4
)

is 0. So we obtain

0 = −16− Tr(Frobp | (Sym3Kl4)
I∞).

This is impossible because (Sym3Kl4)
I∞ is pure of weight 9 and one-dimensional.

– If dim(Sym3Kl4)
I∞ = 0, the middle `-adic cohomology is one-dimensional. The trace

of Frob2 on H1
ét,mid

(
Gm,Fp

,Sym3Kl4
)

is −16. However, since H1
ét,mid

(
Gm,Fp

,Sym3Kl4
)

is pure of weight 10 and one-dimensional, this situation is not possible.
• If Sw(Sym3Kl4) = 3, then dim(Sym3Kl4)

I∞ = 0. So the dimension of the middle `-adic
cohomology is 0. However, the trace of Frob2 on H1

ét,mid

(
Gm,Fp

,Sym3Kl4
)

is at the same
time 0 and −16, which is absurd.

In conclusion, we deduce that Sw(Sym3Kl4) = 5 and the representation (M3
4)` is unramified at 2.

As a consequence, the conductor N is 20 · 15 = 15. �

By the p-adic comparison theorem and our computation of the Hodge numbers for the motive
M3

4, we determine that the Hodge–Tate weight of {(M3
4)`(6)} is (0, 2). Observe that these Galois

representations (M3
4)` are orthogonal, as we have a symmetric perfect paring on the motive M3

4

given in Proposition 3.5. According to [28, 1.4(2)], the associated Galois representation {(M3
4)`(6)}

corresponds to a modular form f = q+
∑∞
n=2 anq

n ∈ S3(15, εf ) of complex multiplication for some
characters εf : Z/15Z→ C×. Moreover, for any p 6∈ {3, 5} ∪ {`} we deduce that

af (p) = Tr(Frob−1
p | (M3

4)`(6)) = det
(
(M4

3)`(6)
)−1 · Tr(Frobp | (M3

4)`(6))

= −ε−1
f ·

1

p4
(m3

4(p) + 1 + p2 + p3).

At this point, the remaining task is to identify the modular form. We already know that this
modular form has level 15 and weight 3.

Lemma 5.8. The character εf is the Legendre symbol
( •
15

)
.

Proof. Using LMFDB, we find that there are only two modular forms with level 15 and weight 3.
Their characters are both given by the Legendre symbol

( •
15

)
. �
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To summarize, we have determined that the desired modular form has weight k = 3, level 15,
and nebentypus εf = ( ·

15 ). However, there are still two possibilities in LMFDB. To determine the
correct one, we use the Frobenius trace af (2) = −1 of (M3

4)`(6) in Appendix A.2. Our search in
the LMFDB database yields a unique match: the modular form labeled 15.3.d.b. �

5.2.4. Sym4Kl4. The two-dimensional motive M4
4 is defined over Q, pure of weight 13, and equipped

with an anti-symmetric perfect self-pairing.

Proposition 5.9. There exists a (unique) modular form f in S6(Γ0(10)), such that for each prime
p 6∈ {2, 5}, the Fourier coefficient af (p) satisfies

af (p) = −
1

p4
(m4

4(p) + 1 + p2 + p3 + p4 + 2p6),

where m4
4(p) is the symmetric power moment of Sym4Kl4. In particular, the label of the corresponding

modular form is 10.6.a.a. in the database LMFDB.

Proof. By Theorems 4.5 the representation (M3
4)` is unramified at p 6= 2, 5, as K′

Fp
in section 4.1.1

is smooth in this case, i.e., d(4, 4, p)− d(4, 4) = 0 in (4.3). Moreover, we deduce from Theorem 4.15
that the representation (M3

4)` is possibly wildly ramified at p = 2, and is tamely ramified at p = 5.
According to Corollary 4.26 and Remark 5.3, the conductor of the compatible family {(M3

4)`}` is of
the form N = 2s · 5 for some 0 ≤ s ≤ 8.

By the Hodge symmetry, there exists an integer h ∈ {0, 1, . . . , 6} such that the Hodge numbers
hp,13−p of M4

4 are 1 if p = h or 13 − h, and 0 otherwise. Hence, the Hodge–Tate numbers of
(M4

4)`(13− h) are (0, 13− 2h).
The determinant of the Galois representations (M4

4)`(13−h) is an odd character χ13−2h
cyc , according

to Proposition 5.4 and Chebotarev density theorem. Then, the existence of the modular form is
provided by Theorem 5.2. It follows that for any p 6∈ {2, 5, `},

af (p) = Tr(Frob−1
p | (M4

4)`(13− h)) = −
1

ph
(m4

4(p) + 1 + p2 + p3 + p4 + 2p6).

At last, we can compute the Fourier coefficients af (3) = −26 · 34−h and af (7) = −22 · 74−h by
numerical results in Appendix A.2.2. Notice that LMFDB contains the complete list of modular
forms when k2·N ≤ 40000. We try 0 ≤ h ≤ 6 and 0 ≤ s ≤ 8 one by one. If (s, h) = (8, 0), (8, 1), (8, 2)
(8, 3), (8, 4), (7, 0), (7, 1), (7, 2), (7, 3), (6, 0) or (6, 1), we have k2 · N > 40000. In this case, the
database LMFDB is insufficient for our needs. So we follow the appendix in [41] to compute the
space of cuspidal new modular symbols over the finite field Fp. We find that for some primes p, the
numbers af (p) are not roots of the characteristic polynomials of the Hecke operators Tp, as shown
in the table in Appendix A.2.2. In the remaining possible cases, we find two remaining modular
forms in the database of weight 6 with the prescribed Fourier coefficients. By considering the level,
there is only one left with the label 10.6.a.a. in LMFDB because the other one is of level 400. �

Remark 5.10. We deduced from the proof above that the nonzero Hodge numbers of the de Rham
realization of M4

4 are h4,9 = h9,4 = 1. Although the Hodge numbers weren’t computed directly in
[32], they can still be calculated by following an argument similar to that of M3k

3 .

5.2.5. Sym3Kl5. The motive M3
5 is defined over Q, pure of weight 13, and equipped with an anti-

symmetric perfect pairing. It has dimension 2. According to [32, Prop. 5.28], the Hodge numbers
hp,13−p of its de Rham realization are 1 if p = 5 or 8, and 0 in other cases. We aim to show that
the compatible family of Galois representations {(M3

5)`(8)} is modular.

Proposition 5.11. There exists a (unique) modular form f in S4(Γ0(33)), such that for each
prime p 6∈ {3, 11}, the Fourier coefficient af (p) satisfies

(5.12) af (p) = −
1

p5
(m3

5(p) + 1 + p2 + p3 + p4 + p6),

where m3
5(p) is the symmetric power moment of Sym5Kl3. In particular, the label of the corresponding

modular form is 33.4.a.b in the database LMFDB.
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Proof. The representation (M2
5)` is unramified at p if p 6∈ {3, 5, 11, `} by Theorem 4.5 and (4.3).

According to Corollary 4.26, the conductor of {(M3
5)`(5)} is of the form 3s · 5t · 11e for some

0 ≤ s, e ≤ 2 and 0 ≤ t.

Lemma 5.13. If 5 6= `, the representation (M3
5)` is unramified at 5.

Proof. At p = 5, the Swan conductor of Sym3Kl5 is at most 7. Given that the monodromy group
of Kl5 is SL5 and the symmetric power of standard representation of SL5 remains irreducible, the
0-th cohomology H0

ét(Gm,Fp
,Sym3Kl5) vanishes. By the exact sequence (2.5) and Grothendieck–

Ogg–Shafarevich formula, we obtain that

dimH1
ét,mid

(
Gm,Fp

,Sym3Kl5
)
= Sw(Sym3Kl5)− 5− dim(Sym3Kl5)

I∞ .

Consequently, we have 5 ≤ Sw(Sym3Kl5) ≤ 7. According to the numerical results in Appendix A.3,
the trace of H1

ét,mid

(
Gm,Fp

,Sym3Kl5
)

at p = 5 is given by

−(m3
5(p) + 1+ p2 + p3 + p4 + p6 +Tr(Frobp | (Sym3Kl5)

I∞)) = −4 · 55−Tr(Frobp | (Sym3Kl5)
I∞).

Now we proceed by examining each possible value of Sw(Sym3Kl5) as follows.
• If Sw(Sym3Kl5) = 7, the sheaf Sym3Kl5 only has one slope (=1/5) at ∞. We deduce that

the dimension of (Sym3Kl5)
I∞ is 0. Thus, the dimension of the middle `-adic cohomology

of Sym3Kl5 is 2. By Remark 4.12, the representation (M3
5)` is unramified at 5.

• If Sw(Sym3Kl5) = 6, then dim(Sym3Kl5)
I∞ ≤ 1. We consider two cases.

(1) Assume that dim(Sym3Kl5)
I∞ = 1, then the middle `-adic cohomology vanishes. The

trace of Frobenius on H1
ét,mid

(
Gm,Fp

,Sym3Kl5
)

at p = 5 is 0. So we have

0 = −4 · 55 − Tr(Frobp | (Sym3Kl5)
I∞).

Since (Sym3Kl5)
I∞ is pure of weight 12 and of dimension 1, this is impossible.

(2) Assume that dim(Sym3Kl5)
I∞ = 0, the middle `-adic cohomology is one-dimensional.

The trace of H1
ét,mid

(
Gm,Fp

,Sym3Kl5
)

at prime p = 5 is−4·55. Since H1
ét,mid

(
Gm,Fp

,Sym3Kl5
)

is pure of weight 13 and of dimension 1, which leads to a contradiction.
• If Sw(Sym3Kl5) = 5, then dim(Sym3Kl5)

I∞ = 0. So the dimension of the middle `-adic
cohomology of Sym3Kl5 is 0. The trace of H1

ét,mid

(
Gm,Fp

,Sym3Kl5
)

at prime p = 5 is at
the same time 0 and −4 · 55, which is absurd.

In conclusion, we have Sw(Sym3Kl5) = 7 and the representation (M3
5)` is unramified at 5. �

Consider the Galois representations (M3
5)`(5). The Hodge–Tate numbers of (M3

5)`(5) are (0, 3).
Their determinants are the odd characters χ−3

cyc by Proposition 5.4 and the Chebotarev density
theorem. The existence of the modular form is guaranteed by Theorem 5.2. Consequently, we
deduce (5.12) for any p 6∈ {3, 11, `}.

Thus, the modular form we seek has weight 4, and its level is Nf = 3s · 11e ≤ 1089, with
0 ≤ s, e ≤ 2. Furthermore, we compute the Fourier coefficients a2 = −1 and a5 = −4 in
Appendix A.3. Given this information, there is only one remaining modular form, with weight 4
and level N = 33, labeled as 33.4.a.b in the LMFDB database. �

5.2.6. Kl
(2,1)
3 . The motive M

(2,1)
3 is defined over Q, pure of weight 9 and equipped with an anti-

symmetric perfect pairing. It has dimension 2, and the Hodge numbers hp,9−p of its de Rham
realization is 1 if p = 4 or 5 and is 0 otherwise. We want to show that the compatible family of
Galois representations {

(
M

(2,1)
2

)
`
(5)} is modular.

Proposition 5.14. There exists a (unique) modular form f ∈ S2(Γ0(14)), such that for each prime
p 6∈ {2, 3, 7}, the Fourier coefficient ap satisfies

(5.15) af (p) = −
1

p4

(
m

(2,1)
3 (p) + p+ p2 + p3

)
,

where m
(2,1)
3 (p) is the moment of the sheaf Kl

(2,1)
3 . In particular, this modular form is labeled

14.2.a.a in the database LMFDB.
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Proof. The sheaf Kl
(2,1)
3 is tamely ramified at 0 and wildly ramified at ∞. By Grothendieck–

Ogg–Shafarevich formula (2.4), the dimension of the `-adic cohomology is equal to the Swan
conductor at ∞. Similar to Proposition 2.32, since Kl

(2,1)
3 ⊂ Kl⊗4

3 and ζ3 acts on (Kl⊗4
3 )η∞ freely,

we can compute that the Swan conductor of Kl
(2,1)
3 at ∞ is 5 when p = 3. By the exact sequence

(2.5) and Propositions 2.17 and 2.19, we have

dimH1
ét,mid

(
Gm,Fp

,Kl
(2,1)
3

)
=

{
2 p 6= 2, 7

1 p = 2, 7

and
Tr
(
Frobp,

(
M

(2,1)
3

)
`
(4)
)
= −p−4(m

(2,1)
3 (p) + p+ p2 + p3).

By Remark 4.12 and Corollary 4.26, the representation
(
M

(2,1)
3

)
`

is unramified at p 6∈ {2, 7, `} and
the conductor of the compatible family {

(
M

(2,1)
3

)
`
}` is 14.

By [32, Prop. 5.28], the Hodge numbers hp,9−p of its de Rham realization are 1 if p = 4 or 5,
and are 0 otherwise. By proposition 5.4 and the Chebotarev density theorem, the determinant of(
M

(2,1)
3

)
`
(5) is χ−1

cyc, which is odd. Then Theorem 5.2 shows the existence of the modular form and
we deduce (5.15) for any p 6= 2, 7, `.

At last, by computations of Fourier coefficients af (p) in Appendix A.1.2 for p ≤ 23, we can
determine the modular form in the database LMFDB. �

5.2.7. Kl
(2,2)
3 . The motive M

(2,2)
3 is defined over Q, pure of weight 13 and equipped with an

anti-symmetric perfect pairing in Proposition 3.5.

Proposition 5.16. There exists a (unique) modular form f = q +
∑∞
n≥2 anq

n ∈ S4(Γ0(6)), such
that for each prime p 6∈ {2, 3}, the Fourier coefficient af (p) satisfies

af (p) = −
1

p5

(
m

(2,2)
3 (p) + p2 + p3 + 2p4 + 2p6

)
,

where m(2,2)
3 (p) is the moment of the sheaf Kl

(2,2)
3 . In particular, this modular form is labeled 6.4.a.a

in the database LMFDB, the same as the modular form corresponding to Sym6Kl2.

Proof. The sheaf Kl
(2,2)
3 is tamely ramified at 0 and wildly ramified at ∞. By Proposition 2.17,

Proposition 2.19, and the long exact sequence (2.5), we obtain that

dimH1
ét,mid

(
Gm,Fp

,Kl
(2,2)
3

)
=

{
2 p 6= 2, 3

1 p = 2

and
Tr
(
Frobp,

(
M

(2,2)
3

)
`
(5)
)
= −p−5(m

(2,2)
3 (p) + p2 + p3 + 2p4 + 2p6)

if p 6= 2, 3. By Remark 4.12, the set of bad primes S is a subset of {2, 3}, and dim
(
M

(2,2)
3

)
`
= 2.

According to Theorem 4.5 and Corollary 4.26, the Galois representation
(
M

(2,2)
3

)
`

is tamely ramified
at p = 2 its Artin conductor at p = 2 is 1. As consequence of Remark 5.3, the conductor of
{
(
M

(2,2)
3

)
`
}` is of the form N = 2 · 3s for some 0 ≤ s ≤ 5.

By the Hodge symmetry, there exists an integer h ∈ {0, 1, . . . , 6} such that the Hodge numbers
hp,13−p are 1 if p = h or 13 − h, and are 0 otherwise. Hence, the Hodge–Tate numbers of(
M

(2,2)
3

)
`
(13− h) are (0, 13− 2h).

By Proposition 5.4 and Chebotarev density theorem, we have det
(
M

(2,2)
3

)
`
= χ−13

cyc . Thus, the
determinant of

(
M

(2,2)
3

)
`
(13 − h) is χ13−2h

cyc , which is an odd character. Therefore, Theorem 5.2
guarantees the existence of a modular form of weight 14−2h and of level 2·3s such that

(
M

(2,2)
3

)
`
(13−

h) ' ρf,`. It follows that for any p 6∈ S ∪ {`},

af (p) = Tr(Frob−1
p | ((M

(2,2)
3 )`(13− h)) = −

1

ph
(
m

(2,2)
3 (p) + p2 + p3 + 2p4 + 2p6

)
.

We use a similar argument in proposition 5.9 to determine the modular form. We test the
combinations 0 ≤ h ≤ 6 and 0 ≤ s ≤ 5 one by one. If (s, h) = (5, 0), (5, 1) or (5, 2), we compute
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the space of cuspidal new modular symbols over the finite field Fp. We find that for some primes p,
the numbers af (p) are not roots of the characteristic polynomials of the Hecke operators Tp, as
shown in the table in Appendix A.1.2. Therefore, (s, h) 6= (5, 0), (5, 1) or (5, 2), and we proceed to
search the modular form within LMFDB. The remaining modular form has weight 4 and level 6,
corresponding to (s, h) = (1, 5) in this case. �

Remark 5.17. The nonzero Hodge numbers of the de Rham realization of M(2,2)
3 are h5,8 = h8,5 = 1.

We cannot calculate these using the methods for [32, Thm. 1.1], as the nilpotent part of the local
monodromy of the connection Kl

(2,2)
3 at 0 is not a direct sum of Jordan blocks of different sizes

(there are two blocks of size 4).

5.2.8. A conjecture. One interesting result of Proposition 5.16 is that for p - 6, the moments of the
sheaves Sym6Kl2 and Kl

(2,2)
3 are the same, as they are both equal to the Fourier coefficients of the

modular form with label 6.4.a.a. As a direct consequence, we have the identity

(5.18) m
(2,2)
3 (p)− p3m6

2(p) = −2p6 − 2p4 − p2.

In fact, we have isomorphisms of `-adic Galois representations (M6
2)`(−3) '

(
M

(2,2)
3

)
`
, which leads

us the following conjecture.

Conjecture 5.19. The two motives M6
2(−3) and M

(2,2)
3 are isomorphic.

A. Computation of moments

This article used several numerical results computed using the software Sagemath [38]. This
appendix explains the algorithms, and all codes can be found on my web page. We fix an embedding
ι : Q` ↪→ C and identify `-adic numbers with their images in C via ι.

A.1. Computations of mk
3(p), m

(2,1)
3 (p) and m

(2,2)
3 (p).

A.1.1. mk
3(p). For a prime number p, after Deligne [9, Somme. Trig.], we know that for each a ∈ F×

p ,
there exist 3 algebraic numbers αa, βa and γa, of absolute value p, such that s1(a) = αa+βa+γa =
Kl3(a; p) and s3(a) = αa · βa · γa = p3. Then the degree two elementary symmetric polynomials are

s2(a) := αaβa + βaγa + γaαa = p3(α−1
a + β−1

a + γ−1
a ) = p(αa + βa + γa) = p ·Kl3(a; q).

The k-th symmetric power moments of Kl3 are integers of the form

mk
3(p) :=

∑
a∈F×

p

∑
i+j+k=k

αiaβ
j
aγ
k
a ,

which can be computed using the value of elementary symmetric polynomials. For example, the
3-rd, 4-th and 6-th symmetric power moments can be computed by

m3
3(p) =

∑
a

(s1(a)
3 − 2s1(a)s2(a) + p3),

m4
3(p) =

∑
a

(s1(a)
4 − 3s1(a)

2s2(a) + s2(a)
2 + 2p3s1(a)),

m6
3(p) =

∑
a

(s1(a)
6 − 5s1(a)

4s2 + 6s1(a)
2s2(a)

2 − s2(a)3 + 4p3s1(a)
3 − 6p3s1(a)s2(a) + p6,

respectively. Hence, we obtain from (2.5) that

a43(p) = −
1

p3
(m4

3(p) + 1 + p2 + p4)

is the trace of the middle cohomology H1
ét,mid(Gm,Fp

,Sym4Kl3). We list some numerical results as
follows.

https://yichenqin.net
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Primes
3 5

m3
3(p) -10

a43(p) -2 -12
m6

3(p) -820

A.1.2. m(2,1)
3 (p) and m(2,2)

3 (p). By (2.10), the moment of Kl
V2,1

SL3
is the difference of the moment of

Sym2Kl3 ⊗ ∧2Kl3 and that of Kl3(−3). Hence, we obtain

m
(2,1)
3 (p) =

∑
a

(s1(a)
2s2(a)− s22(a)− p3s1(a)).

Let a(2,1)3 (p) be the traces of the middle cohomology H1
ét,mid(Gm,Fp

,Kl
(2,1)
3 ), which can be computed

by
a
(2,1)
3 (p) = −p−4(m

(2,1)
3 (p) + p+ p2 + p3).

As for Kl
(2,2)
3 , we conclude similarly from (2.10) that the moment of Kl

(2,2)
3 is

m
(2,2)
3 (p) =

∑
a

(
(s1(a)

2 − s2(a))(s2(a)2 − p3s1(a))− p3s1(a) · s2(a)
)
.

Let a(2,2)3 (p) be the traces of the middle cohomology H1
ét,mid(Gm,Fp

,Kl
(2,3)
3 ). Then we obtain

a
(2,2)
3 (p) = −p−5(m

(2,2)
3 (p) + p2 + p3 + 2p4 + 2p6).

Some numerical results are as follows.
Primes

5 7 11 13 17 19 23

a
(2,1)
3 0 0 -4 6 2 0
a
(2,2)
3 6 -16 12 38 -126 20 168

Moreover, we compute the space of cuspidal new modular symbols over some finite fields F` and
verify whether the prescribed traces are roots of the characteristic polynomials of Tp. Below are
some numerical results.

Level N weight k Prime p Finite field F` Tp(af (p))

2 · 35 14 5 F23 1
2 · 35 12 5 F23 -1
2 · 35 10 5 F13 5

A.2. Computation of m3
4(p) and m4

4(p).

A.2.1. m3
4(2). Here, we compute the third symmetric power moment at p = 2. Using Sagemath [38],

we know that Kl4(1; 2) = 1 and Kl4(1; 4) = 11. Let α1, . . . , α5 be the eigenvalues of Frob2 acting
on (Kl4)1 and let s1, . . . , s4 be the elementary symmetric polynomials on αi. By the definition of
Kl4, we have

s1 =
∑

αi = −Kl4(1; 2) = −1,

s21 − 2s2 =
∑

α2
i = −Kl4(1; 4) = −11.

Therefore, s1 = −1 and s2 = 6. Moreover, since detKl4 = E(−6), we have s4 =
∏
αi = p6.

Noticing that αi · α = p3, we have s3 = p3s1 − 8. Then, the moments can be computed by

m3
4(2) =

∑
i,j,k

αiαjαk = s31 − 2s1s2 + s3 = 3.

It follows that
a34(2) = −

1

p4
(m3

4(p) + 1 + p2 + p3) = −1.
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A.2.2. m3
4(p) and m4

4(p). Let α1(a), . . . , α4(a) be the eigenvalues of Frobp acting on (Kl4)a for
a ∈ F×

p and by s1(a), . . . , s4(a) the elementary symmetric polynomials on αi(a). By the definition
of Kl4, we have

s1(a) =
∑

αi(a) = −Kl4(a; p) and s1(a)
2 − 2s2(a) =

∑
αi(a)

2 = −Kl4(a; p
2).

Furthermore, since detKl4 = E(−6), we have s4(a) =
∏
αi = p6. Noticing that αi(a) · αi(a) = p3,

we have s3(a) = p3s2(a). Then, the moments can be computed as

m4
4(p) =

∑
a

(s1(a)
4 − 3s1(a)

2s2(a) + s2(a)
2 + 2p3s1(a)s1(a)− p6).

At last, the traces of the middle cohomology H1
ét,mid(Gm,Fp

,Sym4Kl4) are

a44(p) = −
1

p4
(m4

4(p) + 1 + p2 + p3 + p4 + 2p6).

Some numerical results are listed below.

Primes
2 3 7

a34(p) -1
a44(p) -26 -22

Similar to the end of section A.1.2, we list some numerical results when N · k2 ≥ 40000.

Level N weight k Prime p Finite field F` Tp(af (p))

28 · 5 14 7 F11 3
28 · 5 12 3 F13 10
28 · 5 10 7 F11 3
28 · 5 8 7 F11 5
28 · 5 6 7 F11 4
27 · 5 14 3 F17 8
27 · 5 12 7 F17 8
27 · 5 10 3 F11 5
27 · 5 8 7 F11 3
26 · 5 14 3 F17 3
26 · 5 12 3 F29 2

A.3. Computation of m3
5(p). Let α1(a), . . . , α5(a) be the eigenvalues of Frobp acting on (Kl5)a for

a ∈ F×
p and by s1(a), . . . , s5(a) the elementary symmetric polynomials on αi(a). By the definition

of Kl5, we have

s1(a) =
∑

αi(a) = Kl5(a; p) and s1(a)
2 − 2s2(a) =

∑
αi(a)

2 = Kl5(a; p
2).

Furthermore, since detKl5 = E(−10), we have s5(a) =
∏
αi = p10. Because αi(a) · αi(a) = p4, we

have s3(a) = p2s2(a) and s4 = p6s1(a). Then, the moments can be calculated as

m3
5(p) =

∑
a∈F×

p

∑
i≤j≤k

αi(a)αj(a)αk(a) =
∑
a

s1(a)
3 − 2s1(a)s2(a) + 3s3(a).

At last, the traces of middle cohomology H1
ét,mid(Gm,Fp

,Sym3Kl5) are

a35(p) = −
1

p5
(m3

5(p) + 1 + p2 + p3 + p4 + p6).

The values of moments and Frobenius traces at p = 2, 5 are listed below.
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Primes
2 5

m3
5(p) -61 3901

a35(p) -1 -4
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