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Abstract
In this article, we study a family of motivesM𝑘

𝑛+1
associ-

ated with the symmetric power of Kloosterman sheaves
constructed by Fresán, Sabbah, and Yu. They demon-
strated that for 𝑛 = 1, the 𝐿-functions of M𝑘

2
extend

meromorphically to ℂ and satisfy the functional equa-
tions conjectured by Broadhurst and Roberts. Our work
aims to extend these results to the 𝐿-functions of some
of the motivesM𝑘

𝑛+1
, with 𝑛 > 1, as well as other related

two-dimensional motives. In particular, we prove sev-
eral conjectures of Evans type, which relate moments
of Kloosterman sheaves and Fourier coefficients of
modular forms.
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1 INTRODUCTION

The Kloosterman sums are exponential sums over finite fields, defined for each power of prime
numbers 𝑞 = 𝑝𝑟 and each 𝑎 ∈ 𝔽𝑞, by

Kl2(𝑎; 𝑞) ∶=
∑
𝑥∈𝔽×𝑞

exp
(
2𝜋𝑖∕𝑝 ⋅ Tr𝔽𝑞∕𝔽𝑝

(
𝑥 +

𝑎

𝑥

))
,

where Tr𝔽𝑞∕𝔽𝑝 is the trace from 𝔽𝑞 to 𝔽𝑝. These sums can be regarded as finite field versions of
Bessel functions,

Be(𝑧) ∶= ∮𝑆1 exp
(
𝑥 +

𝑧

𝑥

)
d𝑥

𝑥
,

which satisfy the Bessel differential equations (𝑧𝜕𝑧)2 − 𝑧 = 0.
When 𝑎 ≠ 0, Weil showed in [39] that Kl2(𝑎; 𝑞) = −(𝛼𝑎 + 𝛽𝑎) for some algebraic numbers

𝛼𝑎, 𝛽𝑎 of complex norm 𝑞1∕2. For 𝑘 ⩾ 1, the 𝑘th symmetric power moments of Kloosterman sums
are integers𝑚𝑘

2
(𝑞) defined by

𝑚𝑘
2(𝑞) =

∑
𝑎∈𝔽𝑞

𝑘∑
𝑖=0

𝛼𝑖𝑎𝛽
𝑘−𝑖
𝑎 .

To package the information of these moments as 𝑞 varies across all powers of 𝑝, we consider the
generating series

exp

(∑
𝑟⩾1

𝑚𝑘
2
(𝑝𝑟)

𝑟
𝑇𝑟

)
,

which serves as the analog of the Hasse–Weil zeta function for varieties over finite fields.
We define the (partial) 𝐿-function attached to 𝑘th symmetric power moments of Kloosterman

sheaves, denoted by 𝐿𝑆
𝑘
(𝑠), by considering the Euler product, where the local factors at 𝑝 are made

from the aforementioned generating series. These 𝐿-functions are a priori defined on the domain
{𝑠 ∈ ℂ ∣ Re(𝑠) > 1 + 𝑘+1

2
} by construction and the work of Fu–Wan [17]. Hence, it is natural to

question whether this 𝐿-function can be extended meromorphically to the complex plane and
whether it satisfies a functional equation.

Example 1.1. The cases for 𝑘 ⩽ 8 have been proven indirectly by demonstrating that the
expressions of moments of Kloosterman sums consist of polynomials in 𝑝, Dirichlet characters,
and Fourier coefficients of modular forms (holomorphic cuspidal Hecke eigenforms).

∙ When 𝑘 ⩽ 4, the moments 𝑚𝑘
2
(𝑝) can be computed explicitly. We find that the 𝐿-function is

trivial if 𝑘 = 1, 2, or 4, and is the Dirichlet 𝐿-function 𝐿(𝑠, ( ∙
3
)) if 𝑘 = 3.

∙ When 𝑘 = 5, there exists a holomorphic cuspidal Hecke eigenform 𝑓 ∈ 𝑆3(Γ0(15), (
⋅
15
)) such

that

𝑎𝑓(𝑝) = −
1

𝑝2

(
𝑚5
2(𝑝) + 1

)
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if 𝑝 ∤ 15, proved by Peters et al. [31] and Livné [28].
∙ When 𝑘 = 6, there exists a holomorphic cuspidal Heck eigenform 𝑓 ∈ 𝑆4(Γ0(6)) such that

𝑎𝑓(𝑝) = −
1

𝑝2

(
𝑚6
2(𝑝) + 1

)
if 𝑝 ∤ 6, proved by Hulek et al. [22].

∙ When 𝑘 = 7, there exists a holomorphic cuspidal Hecke eigenform 𝑓 ∈ 𝑆3(Γ0(525), 𝜖𝑓), where
𝜖𝑓 = ( ⋅

21
) ⋅ 𝜖5 and 𝜖5 is a quartic character with conductor 5, such that

𝑎𝑓(𝑝)
2𝜖𝑓(𝑝)

−1 − 𝑝2 = −
1

𝑝2

( 𝑝

105

)(
𝑚7
2(𝑝) + 1

)
for 𝑝 > 7, conjectured by Evans [12] and proved by Yun [41].

∙ When 𝑘 = 8, there exists a holomorphic cuspidal Hecke eigenform 𝑓 ∈ 𝑆6(Γ0(6)), such that

𝑎𝑓(𝑝) = −
1

𝑝2

(
𝑚8
2(𝑝) + 1

)
for 𝑝 ∤ 6, conjectured by Evans [13] and proved by Yun and Vincent [41].

From the examples discussed, we deduce that 𝐿𝑆
𝑘
(𝑠) can be extended meromorphically to ℂ

and satisfies a functional equation when 𝑘 ⩽ 8. For general 𝑘, Broadhurst and Roberts predicted
precise formulas for the functional equations of 𝐿𝑆

𝑘
(𝑠) in [6, 7]. And then, Fresán–Sabbah–Yu

established the following theorem.

Theorem 1.2 (Fresán–Sabbah–Yu). The partial 𝐿-function 𝐿𝑆
𝑘
(𝑠) can be extended meromorphically

to the complex plane. Furthermore, we can complete 𝐿𝑆
𝑘
(𝑠) to a holomorphic functionΛ𝑘(𝑠) such that

Λ𝑘(𝑠) = 𝜖𝑘Λ𝑘(𝑘 + 2 − 𝑠),

where 𝜖𝑘 ∈ {±1} and 𝜖𝑘 is 1 if 𝑘 is odd.

The primary object of this article is to extend the theorem above to 𝐿-functions attached to
moments (beyond symmetric power moments) of Kloosterman sums in multiple variables.

1.1 Kloosterman sheaves

The Kloosterman sums in 𝑛 variables are the exponential sums over finite fields, defined for each
power of prime numbers 𝑞 = 𝑝𝑟 and each 𝑎 ∈ 𝔽×𝑞 , by

Kl𝑛+1(𝑎; 𝑞) ∶=
∑

𝑥1,…,𝑥𝑛∈𝔽
×
𝑞

exp

(
2𝜋𝑖

𝑝
⋅ Tr𝔽𝑞∕𝔽𝑝

(
𝑥1 +⋯ + 𝑥𝑛 +

𝑎

𝑥1⋯𝑥𝑛

))
.

By fixing a prime number 𝓁 ≠ 𝑝 and an embedding 𝜄 ∶ ℚ𝓁 → ℂ, Deligne constructed lisse
𝓁-adic sheaves Kl𝑛+1 over 𝔾𝑚,𝔽𝑞

= 𝔸1
𝔽𝑞
∖{0}, which are pure of weight 𝑛 and of rank 𝑛 + 1 in
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[9, Sommes. Trig. Thm. 7.8]. Moreover, for every 𝑎 ∈ 𝔽×𝑞 = 𝔾𝑚,𝔽𝑞
(𝔽𝑞) and every geometric point 𝑎

localized at 𝑎, we have

𝜄◦Tr(Frob𝑞, (Kl𝑛+1)𝑎) = (−1)𝑛Kl𝑛+1(𝑎; 𝑞).

Hence, the 𝓁-adic sheaves Kl𝑛+1 can be regarded as the sheaf version of the Kloosterman sums,
and we call them Kloosterman sheaves.
In their work [20], Heinloth, Ngô, and Yun constructed a larger class of 𝓁-adic sheaves, called

Kloosterman sheaves for reductive groups, using methods from the geometric Langlands program.
For each split reductive group 𝐺, they construct a tensor functor

Kl𝐺 ∶ Rep(𝐺) → Loc𝔾𝑚,𝔽𝑞
(1.3)

from the category of finite-dimensional representations of 𝐺 with coefficients in ℚ𝓁(𝜇𝑝) to the
category of lisse 𝓁-adic sheaves on 𝔾𝑚,𝔽𝑞

. Our primary interest lies in the case where 𝐺 = SL𝑛+1.
In particular, by selecting𝑉 as the standard representation Std of SL𝑛+1 and Sym𝑘Std, respectively,
we obtain the classical Kloosterman sheaf Kl𝑛+1(

𝑛

2
) and its symmetric power Sym𝑘Kl𝑛+1(

𝑛𝑘

2
).

Let 𝑉 = 𝑉𝜆 be the representation of the highest weight 𝜆 = (𝜆1, … , 𝜆𝑛) of SL𝑛+1. We denote|𝜆| = ∑𝑛
𝑖=1 𝜆𝑖 and Kl

𝜆
𝑛+1 as the sheaf KlSL𝑛+1(𝑉𝜆)(−

𝑛|𝜆|
2
). We have an explicit description of Kl𝜆𝑛+1

using Weyl’s construction, detained in Section 2.1. In what follows, we formulate the analogs of
moments and 𝐿-functions for Kl𝜆𝑛+1.

Definition 1.4. For each 𝜆, themoment of the Kloosterman sheaf Kl𝜆𝑛+1 is defined as the integer

𝑚𝜆
𝑛+1(𝑞) ∶= −

∑
𝑎∈𝔽×𝑞

Tr
(
Frob𝑞,

(
Kl𝜆𝑛+1

)
𝑎

)
.

By the Grothendieck trace formula [9, Rapport. Thm. 3.1] and Theorem 4.5, the generating
series

𝑍(𝜆, 𝑛 + 1, 𝑝; 𝑇) ∶= exp

(∑
𝑟⩾1

𝑚𝜆
𝑛+1

(𝑝𝑟)

𝑟
⋅ 𝑇𝑟

)

is a rational function

2∏
𝑖=0

det
(
1 − Frob𝑝𝑇 ∣ H𝑖

�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

))(−1)𝑖+1
∈ ℚ(𝑇).

In order to define the partial 𝐿-function associated with Kl𝜆𝑛+1 as an Euler product, it is not
advisable to directly use 𝑍(𝜆, 𝑛 + 1, 𝑝; 𝑇) as the local factor at 𝑝, because the complex norms of
roots and poles of 𝑍(𝜆, 𝑛 + 1, 𝑝; 𝑇) lie within the set {𝑝−𝑖∕2 ∣ 0 ⩽ 𝑖 ⩽ 𝑛|𝜆| + 1}. Motivated by the
work of Fu and Wan [17, 18] for the sheaves Sym𝑘Kl𝑛+1, we remove some “trivial factors” from
𝑍(𝜆, 𝑛 + 1, 𝑝; 𝑇). By the long exact sequence (2.5) and the main theorem of Weil II [10, 3.3.1], we
need to discard the contributions from the invariants and coinvariants of the Kloosterman sheaves
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at 0 and∞. Hence, the ideal candidate for the local factors at 𝑝 is

𝑀(𝜆, 𝑛 + 1, 𝑝; 𝑇) ∶= det
(
1 − Frob𝑝𝑇 ∣ H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

))
,

where

H1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
= im

(
H1
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

) forget support
GGGGGGGGGGGG→ H1

�́�𝑡

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

))
is the middle 𝓁-adic cohomology of Kl𝜆𝑛+1.

Definition 1.5. The partial 𝐿-function 𝐿𝑆(𝜆, 𝑛 + 1; 𝑠) attached to Kl𝜆𝑛+1 is defined as the Euler
product

𝐿𝑆(𝜆, 𝑛 + 1; 𝑠) ∶=
∏

𝑠∉𝑆(𝜆,𝑛+1)

𝑀(𝜆, 𝑛 + 1, 𝑝; 𝑝−𝑠)−1.

Here, the set 𝑆(𝜆, 𝑛 + 1) is a finite set of primes, only depending on 𝜆 and 𝑛 + 1 (see Theorem 4.5)
such that the degree of𝑀(𝜆, 𝑛 + 1, 𝑝; 𝑇) remains constant for 𝑝 ∉ 𝑆(𝜆, 𝑛 + 1).

The 𝐿-function is a priori a holomorphic function on the domain {𝑠 ∈ ℂ ∣ Re(𝑠) > 1 + 𝑛|𝜆|+1
2

},

because the complex norms of the roots of𝑀(𝜆, 𝑛 + 1, 𝑝; 𝑇) are 𝑝−
𝑛|𝜆|+1

2 . However, the definition
alone does not provide further information. We can ask, as before, whether the partial 𝐿-function
𝐿𝑆(𝜆, 𝑛 + 1; 𝑠) can be meromorphically extended to the entire complex plane and satisfies a
functional equation.

1.2 Main results

We introduce our main results here. For simplicity, when 𝜆 = (𝑘, 0, … , 0), we write 𝐿𝑆(𝑘, 𝑛 + 1; 𝑠)

instead of 𝐿𝑆((𝑘, 0, … , 0), 𝑛 + 1; 𝑠).

Theorem 1.6. For each value of (𝑛 + 1, 𝑘) given in the table below,

𝒏 + 𝟏 𝒌

3 1,2,3,4,5,6,7,8,9
5 1,2,3,4
4,7,8,10,11,13 1,2,3

the partial 𝐿-function 𝐿𝑆(𝑘, 𝑛 + 1; 𝑠) extends meromorphically to the complex plane. Furthermore, it
can be completed into a holomorphic function Λ(𝑘, 𝑛 + 1; 𝑠) satisfying a functional equation

Λ(𝑘, 𝑛 + 1; 𝑠) = ±Λ(𝑘, 𝑛 + 1; 𝑛𝑘 + 2 − 𝑠).

In Example 1.1, we see that there are some relations between Fourier coefficients of certain
explicitly determined modular forms and symmetric power moments of Kloosterman sums. Yun
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proposed Conjectures of Evans type in [41], predicting new relations for Kloosterman sheaves for
reductive groups. For simplicity, throughout this article, amodular formwill refer to a normalized
holomorphic cuspidal Hecke eigenform.
These relations imply that the 𝐿-functions of these sheaves are 𝐿-functions of the corresponding

modular forms.

Theorem 1.7. The 𝐿-functions of the Kloosterman sheaves Sym4Kl3, Sym3Kl4, Sym4Kl4, Sym3Kl5,
Kl

(2,1)
3

, andKl(2,2)
3

arise frommodular forms. Moreover, we determine explicitly these modular forms
and the relations between their Fourier coefficients and moments of Kloosterman sheaves.
The information of these modular forms 𝑓 ∈ 𝑆𝑘(Γ0(𝑁), 𝜖) are summarized in the following table.

Sheaves 𝑵 𝒌 𝝐 Labels in LMFDB [37]
Sym4Kl3 14 4 1 14.4.a.b
Sym3Kl4 15 3

(
∙

15

)
15.3.a.b.

Sym4Kl4 10 6 1 10.6.a.a.
Sym3Kl5 33 4 1 33.4.𝑎.𝑏

Kl(2,1)
3

14 2 1 14.2.a.a
Kl(2,2)

3
6 4 1 6.4.a.a

Alongside establishing themain theorems, we have also successfully proved several new results
about the Kloosterman Sheaves. For example, we calculated the local monodromy group of Kl3
at∞ when 𝑝 = 3 in Theorem 2.24. When 𝑛 ⩾ 3, the local monodromy group of Kl𝑛+1 at∞ when
𝑝 ∣ 𝑛 + 1 is still unknown.
Furthermore,we observe that themodular forms linked to themoments of the sheaves Sym6Kl2

and Kl(2,2)
3

are identical, with label 6.4.𝑎.𝑎 in LMFDB, thanks to Theorem 1.7 and [22]. In par-
ticular, we deduce an identity between moments of Sym6Kl2 and Kl

(2,2)
3

in (5.18). This prompts
us to ask whether there exists a geometric explanation for this phenomenon, as conjectured in
Conjecture 5.19.

1.3 Idea of the proof

Our strategy in proving Theorem 1.6 and Theorem 1.7 is as follows. We begin with construct-
ing families of Galois representations of geometric origin, whose 𝐿-functions precisely match
𝐿(𝜆, 𝑛 + 1; 𝑠), extending the construction in [16, (3.1)]. Then, we subtract geometric information
from these families of Galois representations to be able to apply some theorems from the auto-
morphic side. Once we establish that these Galois representations are potentially automorphic,
the 𝐿-functions 𝐿(𝜆, 𝑛 + 1; 𝑠) extend meromorphically to ℂ and satisfy functional equations as a
result. At last, for Theorem 1.7, one needs extra numerical results to locate the modular forms
in LMFDB.

1.3.1 Galois representations arising from geometry

Drawing inspiration from the analogy between Kloosterman sums and Bessel functions, Fresán,
Sabbah, and Yu considered the Kloosterman connection, which is the rank 𝑛 + 1 connection
on 𝔾𝑚,ℂ corresponding to the Bessel differential equation (𝑧𝜕𝑧)

𝑛+1 − 𝑧 = 0. They interpret the
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middle de Rham cohomology of the connection Sym𝑘Kl𝑛+1, that is, the image of the forget
supports morphism from the cohomology with compact support to the usual cohomology, as the
de Rham realization of an exponential motive overℚ in the sense of [15]. This exponential motive
is classical, meaning that it is isomorphic to a Nori motiveM𝑘

𝑛+1
over ℚ.

This motive is isomorphic to a subquotient of H𝑛𝑘−1
𝑐 ()(−1), where  is the hyper-

surface defined by the 𝑘th iterated Thom–Sebastiani sum of the Laurent polynomial
g𝑛+1 =

∑𝑛
𝑗=1 𝑦𝑗 + 1∕

∏𝑛
𝑗=1 𝑦𝑗 , which is the Laurent polynomial

g⊞𝑘
𝑛+1

=

𝑘∑
𝑖=1

(
𝑛∑
𝑗=1

𝑦𝑖,𝑗 +
1∏𝑛

𝑗=1 𝑦𝑖,𝑗

)
(1.8)

on the torus 𝔾𝑛𝑘
𝑚 . We extend their method to construct a motive M𝜆

𝑛+1
for each 𝜆 ∈ ℕ𝑛 in

Definition 3.3, using the Weyl construction. When 𝜆 = (𝑘, 0, … , 0), we recover the motive M𝑘
𝑛+1

constructed by Fresán–Sabbah–Yu.
For each motive M𝜆

𝑛+1
, its 𝓁-adic realizations (M𝜆

𝑛+1
)𝓁 are continuous 𝓁-adic representations

of Gal(ℚ∕ℚ) with coefficients in ℚ𝓁 , isomorphic to subquotients of H𝑛|𝜆|−1
�́�𝑡,c

(
ℚ
,ℚ𝓁)(−1). By

Theorem 4.5, we demonstrate that {(M𝜆
𝑛+1

)𝓁}𝓁 form a compatible family of Galois representations,
with (M𝜆

𝑛+1
)𝓁 being unramified as a representation of Gal(ℚ𝑝∕ℚ𝑝) for primes 𝑝 outside a finite

set of primes, 𝑆(𝜆, 𝑛 + 1). Moreover, there exists an isomorphism of Gal(ℚ𝑝∕ℚ𝑝)-representations(
M𝜆

𝑛+1

)
𝓁[𝜁𝑝] ≃ H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
. (1.9)

Subsequently, we observe that the partial 𝐿-functions of this family of 𝓁-adic Galois representa-
tions coincidewith the𝐿-functions𝐿𝑆(𝜆, 𝑛 + 1; 𝑠) ofKl𝜆𝑛+1.We refer toM

𝜆
𝑛+1

as themotive attached
to the sheaf Kl𝜆𝑛+1.
To investigate these compatible families of Galois representations, as indicated by (1.9), it is

necessary to study the cohomologies of Kloosterman sheaves. However, the challenges posed by
Kl𝜆𝑛+1 are notablymore intricate compared to the relatively straightforward scenarios encountered
with Sym𝑘Kl2 in [16, 41]. Notably, we employ complicated combinatorial formulas to describe
Kl𝜆𝑛+1, which all become simple for Sym

𝑘Kl2 (see Proposition 3.8, for example). Also, an annoy-
ing new feature of Kl𝜆𝑛+1 is that their zeroth cohomology might be nonzero, contrary to the
case of Sym𝑘Kl2 where the zeroth cohomology always vanishes. This phenomenon makes the
proof of Theorem 3.11 and Theorem 4.15 more technical, necessitating a degree of compromise by
introducing certain technical restrictions.

1.3.2 Potential automorphy

Weprove Theorem 1.6 by applying a theoremby Patrikis–Taylor [30] to {(M𝜆
𝑛+1

)𝓁}𝓁 .Wemust verify
a critical condition known as regularity to employ this theorem. Through the 𝑝-adic comparison
theorem, this condition amounts to saying that the Hodge numbers of the de Rham realization
of M𝜆

𝑛+1
are either 0 or 1. Relying on the result in the author’s previous paper [32] (see also

Corollary 3.6), the regularity holds for cases presented in Theorem 1.6.
Notice that the table of specific values of (𝑛 + 1, 𝑘) in Theorem 1.6 is chosen so that

the Hodge numbers of M𝑘
𝑛+1

are regular, see Corollary 3.6. Recent developments in (potential)
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automorphy, such as thework of Boxer–Calegari–Gee–Pilloni [5], offer promising avenues for fur-
ther
exploration. These advancements may potentially extend the results of Theorem 1.6 to cases
beyond the current bounds on Hodge numbers.

1.3.3 Conjectures of Evans type

LetM be amotive attached to one of the sheaves in Theorem 1.7. To prove the claimed conjectures
of Evans type, it suffices to show that the 𝓁-adic realization of M is modular, meaning that it is
isomorphic to 𝜌𝑓,𝓁(ℎ) for some modular forms 𝑓 and some integer ℎ. Here, 𝜌𝑓,𝓁 represents the
two-dimensional Galois representation ofGal(ℚ∕ℚ) attached to 𝑓, constructed in [8, 11]. To prove
this, we use an argument similar to that in [41, Thm. 4.6.1] to show the modularity, which is
originally due to Serre [34, §4.8] and can also be found in [25, Thm. 1.4.3]. The key ingredient of
this argument is Serre’s modularity conjecture.
After establishing modularity, the remaining task is to determine the modular forms’ informa-

tion as explicitly as possible.We can begin by extracting information from the geometric properties
ofM. In Section 4.1, we study the compatible familyM𝓁 of Galois representations and analyze its
conductor 𝑁. This provides us with some information about the size and prime divisors of the
modular form’s level. Additionally, we use the calculation of Hodge numbers of the de Rham
realizationMdR from [32] to determine the weight of the modular form.
However, due to a lack of information at some “bad” primes or missing calculation of Hodge

numbers, we only get partial information on weights and the levels of those modular forms. We
turn to numerical results of traces of Frobenius for assistance in obtaining the Fourier coeffi-
cients of the corresponding modular form using Sagemath [38]. Then, we are able to determine
the actual levels of modular forms in Proposition 5.6 and Proposition 5.11, and the actual weights
in Proposition 5.9 and Proposition 5.16. In particular, we get some new results on Hodge numbers
that cannot be obtained using methods from [32].
At last, we utilize the information from both geometry and computation to pinpoint the

modular form in the LMFDB database.

1.4 Organization of the article

In Section 2, we investigate the properties of Kloosterman sheaves, primarily focusing on those
appearing in Theorems 1.6 and 1.7, including their local structures at 0 and ∞, the dimension
formulas for their 𝓁-adic cohomologies. In Section 3, we construct the motives attached to
Kloosterman sheaves and explore properties of their de Rham realizations, 𝓁-adic realizations,
and other realizations in characteristic 𝑝 > 0. In Section 4, we first investigate the ramification
properties of the Galois representations (M𝜆

𝑛+1
)𝓁 as detailed in Theorems 4.5 and 4.15. Then, we

prove Theorem 1.6. In Section 5, we demonstrate Theorem 1.7 by showing the modularity for
each sheaf case by case in Propositions 5.5, 5.6, 5.9, 5.11, 5.14, and 5.16. In Section A, we outline
the process of calculating moments of Kloosterman sheaves.

2 PROPERTIES OF KLOOSTERMAN SHEAVES

In this section, we primarily focus on Kloosterman sheaves appearing in Theorems 1.6 and 1.7.
After recalling some preliminaries about Weyl’s construction and 𝓁-adic sheaves, we give
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𝐿-FUNCTIONS OF KLOOSTERMAN SHEAVES 9 of 60

Kloosterman sheaves geometrical descriptions in Proposition 2.13. Then, we describe their local
structures at 0 and∞ in Section 2.4 and Section 2.5. At last, we give dimension formulas of the
𝓁-adic cohomologies of Kloosterman sheaves in Section 2.6.

2.1 Weyl’s construction

We recall some preliminaries from [19, §6, §15 & §17]. A partition of an integer 𝑘 is a sequence of
nonnegative integers of the form 𝜇 ∶= (𝜇1, 𝜇2, … , 𝜇𝑚) such that 𝜇1 ⩾ 𝜇2⋯ ⩾ 𝜇𝑚 and

∑
𝑖 𝜇𝑖 = 𝑘.

For a partition of 𝑘, we can associate a Young diagram, such that 𝜇𝑖 are the lengths of the
𝑖th rows. For example, the Young diagram of the partition (3,2,1) is shown in the following
diagram.

For a partition 𝜇 of 𝑘, we define two elements 𝑎𝜇 and 𝑏𝜇 in the group ring ℤ[𝑆𝑘] as
follows. First, we label each block in the Young diagram by indexes in {1, … , 𝑘}. We take
𝑃𝜇 ∶= {𝜎 ∈ 𝑆𝑘 ∣ 𝜎 preserves each row} and 𝑄𝜇 ∶= {𝜏 ∈ 𝑆𝑘 ∣ 𝜏 preserves each column}. Let
sign∶ 𝑆𝑘 → {±1} be the sign character of 𝑆𝑘. Then, we define

𝑎𝜇 ∶=
∑
𝜎∈𝑃𝜇

𝜎, 𝑏𝜇 ∶=
∑
𝜏∈𝑄𝜇

sign(𝜏)𝜏

and 𝑐𝜇 = 𝑎𝜇 ⋅ 𝑏𝜇 in the group ring ℤ[𝑆𝑘].
Let 𝐾 be a field of characteristic 0 and 𝑉 = 𝐾𝑛+1 be the standard representation of SL𝑛+1. The

group 𝑆𝑘 acts on the tensor product 𝑉⊗𝑘 by

𝜎 ⋅ 𝑣1 ⊗⋯⊗ 𝑣𝑘 ∶= 𝑣𝜎(1) ⊗⋯⊗ 𝑣𝜎(𝑘).

Then, we have the endofunctor 𝕊𝜇 of the category of finite-dimensional representations of SL𝑛+1
defined by 𝕊𝜇𝑉 ∶= 𝑉⊗𝑘 ⋅ 𝑐𝜇. For convenience, we also write

(𝑉⊗𝑘)𝑃𝜇×𝑄𝜇,1×sign ∶= 𝑉⊗𝑘 ⋅ 𝑐𝜇. (2.1)

Let 𝜆 = (𝜆1, … , 𝜆𝑛) be a sequence of nonnegative integers. Let 𝑉 be the standard
representation 𝐾𝑛+1 equipped with the natural action of SL𝑛+1 and 𝑉𝜆 be the unique irreducible
subrepresentation of the highest weight

∑
𝑖 𝜆𝑖(𝐿1 +⋯ + 𝐿𝑖) of

Sym𝜆1𝑉 ⊗ Sym𝜆2 ∧2 𝑉 ⊗⋯⊗ Sym𝜆𝑛 ∧𝑛 𝑉.

In the case of SL3, the representation with the highest weight 𝜆1𝐿1 + 𝜆2(𝐿1 + 𝐿2) can be
described as

ker(Sym𝜆1𝑉 ⊗ Sym𝜆2 ∧2 𝑉
𝜋𝜆1,𝜆2
GGGGG→ Sym𝜆1−1𝑉 ⊗ Sym𝜆2−1 ∧2 𝑉), (2.2)
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where 𝜋𝜆1,𝜆2 sends 𝑣1 ⊗⋯⊗ 𝑣𝜆1 ⊗ 𝑤1 ⊗⋯⊗𝑤𝜆2
to

1

(𝜆1)!(𝜆2)!

∑
𝜎∈𝑆𝜆1 ,𝜏∈𝑆𝜆2

< 𝑣𝜎(1), 𝑤𝜏(1) > ⋅𝑣𝜎(2)⋯ 𝑣𝜎(𝜆1) ⊗ 𝑤𝜏(2)⋯𝑤𝜏(𝜆2),

where < ⋅, ⋅ >∶ 𝑉 × ∧2𝑉 → 𝐾 is the natural pairing.
In general, we can construct the representation 𝑉𝜆 using Schur functors as follows. Let

𝜇(𝜆) ∶=

(
𝑛∑
𝑗=1

𝜆𝑗,

𝑛∑
𝑗=2

𝜆𝑗, … , 𝜆𝑛

)
,

𝐺𝜆 ∶= 𝑃𝜇(𝜆) × 𝑄𝜇(𝜆).

(2.3)

By applying 𝕊𝜇(𝜆) to 𝑉⊗|𝜆|, the resulting representation is nothing but 𝑉𝜆. More precisely, we
have 𝑉𝜆 = (𝑉⊗|𝜆|)𝐺𝜆,1×sign. For example, if 𝜆 = (𝑘, 0, … , 0), then 𝑃𝜆 = 𝑆𝑘 and 𝑄𝜆 is trivial. Hence,
𝕊𝜆(𝑉

⊗𝑘) = (𝑉⊗𝑘)𝑆𝑘 = Sym𝑘𝑉.

2.2 Some generalities on 𝓵-adic sheaves

Let 𝑝 ≠ 𝓁 be two prime numbers, 𝑞 a power of 𝑝, 𝜄 ∶ ℚ𝓁 ↪ ℂ an embedding. We denote by 𝐸
either the algebraic closure ℚ𝓁 of ℚ𝓁 , or a finite extension of ℚ𝓁 inside ℚ𝓁 . By an 𝓁-adic sheaf on
a connected separated Noetherian scheme 𝑋 over 𝔽𝑞, we mean a constructible 𝐸-sheaf on 𝑋.

2.2.1 Cohomologies of 𝓁-adic sheaves on curves

Let 𝐶 be a geometrically connected smooth projective curve over 𝔽𝑞. The 𝓁-adic cohomologies
H𝑖
�́�𝑡
(𝐶

𝔽𝑞
,ℱ) of an 𝓁-adic sheaf ℱ on 𝐶 are finite-dimensional 𝐸-vector spaces equipped with

Frobenius actions.
Suppose that ℱ is a lisse 𝓁-adic sheaf on an affine open subset 𝑈 of 𝐶. We denote by 𝜌ℱ the

corresponding continuous 𝓁-adic representation of 𝜋�́�𝑡
1
(𝑈, 𝜂𝑈), and by 𝐺geom the geometric mon-

odromy group ofℱ, that is, the Zariski closure of the image of 𝜋�́�𝑡
1
(𝑈

𝔽𝑞
, 𝜂𝑈) in GL(ℱ𝜂) under 𝜌ℱ .

Then,
H2
�́�𝑡
(𝑈

𝔽𝑞
,ℱ) = H0

�́�𝑡,c
(𝑈

𝔽𝑞
,ℱ) = 0,

H0
�́�𝑡
(𝑈

𝔽𝑞
,ℱ) = (ℱ ∣𝜂𝑈 )

𝐺geom , and H2
�́�𝑡,c

(𝑈
𝔽𝑞
,ℱ) = (ℱ ∣𝜂𝑈 )𝐺geom(−1),

where (ℱ ∣𝜂𝑈 )
𝐺geom and (ℱ ∣𝜂𝑈 )𝐺geom are the invariants and the coinvariants ofℱ under the action

of 𝐺geom.

2.2.2 The Grothendieck–Ogg–Shafarevich formula

For each closed point 𝑥 ∈ |𝐶|, we denote the localization (resp. strict localization) of 𝐶 at 𝑥 (resp.
𝑥) by 𝐶(𝑥) (resp. 𝐶(𝑥)). The special points and generic points of 𝐶(𝑥) and 𝐶(𝑥) are denoted by 𝑠𝑥, 𝜂𝑥
and 𝑠𝑥, 𝜂𝑥, respectively.
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𝐿-FUNCTIONS OF KLOOSTERMAN SHEAVES 11 of 60

Let ℱ be an 𝓁-adic sheaf on 𝐶 that is lisse on an open subset 𝑈 ⊂ 𝐶. We denote
rk(ℱ) = rk(ℱ𝜂), rk𝑥(ℱ) = rk(ℱ𝑠𝑥

), and Sw𝑥(ℱ) = Sw(ℱ𝜂𝑥
). Then, the Euler characteristic

𝜒(𝑈
𝔽𝑞
,ℱ|𝑈) = 2∑

𝑖=0

(−1)𝑖+1 dimH𝑖
�́�𝑡
(𝑈

𝔽𝑞
,ℱ|𝑈)

can be computed by the Grothendieck–Ogg–Shafarevich formula

𝜒(𝑈
𝔽𝑞
,ℱ|𝑈) = ⎛⎜⎜⎝2 − 2g −

∑
𝑥∈|𝐶∖𝑈| deg(𝑥)

⎞⎟⎟⎠ ⋅ rk(ℱ) −
∑

𝑥∈|𝐶∖𝑈| deg(𝑥) ⋅ Sw𝑥(ℱ), (2.4)

see [2, X. Théorème 7.1] or [26, (2.2)]. The sum on the right-hand side is a finite sum because
Sw𝑥(ℱ) = 0 whenever 𝑥 ∈ 𝑈.

2.2.3 The middle 𝓁-adic cohomology

Let 𝐶 be a curve as above, 𝑗 ∶ 𝑈 ↪ 𝐶 an open immersion, and ℱ an 𝓁-adic cohomology on 𝑈.
Themiddle 𝓁-adic cohomology ofℱ is the image of the forgetting support morphism

H1
�́�𝑡,c

(𝐶
𝔽𝑞
,ℱ) → H1

�́�𝑡
(𝐶

𝔽𝑞
,ℱ),

denoted by H1
�́�𝑡,mid

(𝐶
𝔽𝑞
,ℱ), which is identified with the 𝓁-adic cohomology of the (nonderived)

direct image 𝑗∗ℱ. According to [24, 2.0,7], we have a long exact sequence

0 → (ℱ ∣𝜂𝑈 )
𝐺geom →

⨁
𝑥∈|𝐶∖𝑈|, 𝑥 over 𝑥(ℱ|𝜂𝑥 )𝐼𝑥 → H1

�́�𝑡,𝑐
(𝑈

𝔽𝑝
,ℱ)

→H1
�́�𝑡
(𝑈

𝔽𝑝
,ℱ) →

⨁
𝑥∈|𝐶∖𝑈|, 𝑥 over 𝑥(ℱ|𝜂𝑥 )𝐼𝑥 (−1) → (ℱ ∣𝜂𝑈 )𝐺geom(−1) → 0,

(2.5)

where 𝜂𝑥 are the generic point of the strict henselization of 𝐶 at 𝑥, the groups 𝐼𝑥 are the inertia
groups at 𝑥, (ℱ|𝜂𝑥 )𝐼𝑥 are the invariants of 𝐼𝑥, and (ℱ|𝜂𝑥 )𝐼𝑥 are the coinvariants of 𝐼𝑥.
Assume that ℱ is pure of weight 𝑤. By the main theorem of Weil II [10, 3.3.1] and (2.5), we

conclude that
H1
�́�𝑡,mid

(𝑈
𝔽𝑞
,ℱ) ≃ gr𝑊𝑤+1H

1
�́�𝑡,𝑐

(𝑈
𝔽𝑞
,ℱ) ≃ gr𝑊𝑤+1H

1
�́�𝑡
(𝑈

𝔽𝑞
,ℱ).

In particular, the dimension of the middle 𝓁-adic cohomology is given by

dimH1
�́�𝑡,𝑐

(𝑈
𝔽𝑞
,ℱ) −

∑
𝑥∈|𝐶∖𝑈|, 𝑥 over 𝑥 dim(ℱ|𝜂𝑥 )𝐼𝑥 + dimℱ𝐺geom . (2.6)

2.3 Kloosterman sheaves

Let 𝑝 and 𝓁 be two distinct prime numbers and 𝔽𝑞 be the finite field with 𝑞 = 𝑝𝑟 elements. Let
𝜁𝑝 be a primitive 𝑝th root of unity 𝜁𝑝 in ℚ𝓁 , and we denote by 𝐸 = ℚ𝓁(𝜁𝑝). We fix a nontrivial
additive character 𝜓𝑝 ∶ 𝔽𝑝 → 𝐸×, and denote by 𝜓𝑞 the character 𝜓𝑝◦Tr𝔽𝑞∕𝔽𝑝 . The Artin–Schreier
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sheafℒ𝜓𝑞
is a lisse 𝓁-adic sheaf with coefficients in 𝐸 on𝔸1

𝔽𝑞
, whose trace function is given by 𝜓𝑞.

We denote byℒ𝜓𝑞(𝑓)
the inverse image𝑓∗ℒ𝜓𝑞

of theArtin–Schreier sheaf along a regular function
𝑓∶ 𝑋 → 𝔸1

𝔽𝑞
.

Consider the following diagram

(2.7)

where 𝜎 denotes the sum of coordinates and 𝜋 denotes the product of coordinates. We define the
Kloosterman sheaf on 𝔾𝑚,𝔽𝑞

by

Kl𝑛+1 ∶= R𝑛𝜋!𝜎
∗ℒ𝜓𝑞

. (2.8)

Deligne showed in [9, Sommes. Trig. Thm. 7.8] that Kl𝑛+1 is a lisse 𝓁-adic sheaf of rank 𝑛 + 1,
pure of weight 𝑛, tamely ramified at 0 with a single Jordan block, and is totally wildly ramified at
∞ with Swan conductor 1. Moreover, we have an isomorphism

Kl∨𝑛+1 ≃ 𝜄∗𝑛+1Kl𝑛+1,

where Kl∨𝑛+1 is the dual of Kl𝑛+1 and 𝜄𝑛+1 ∶ 𝔾𝑚 → 𝔾𝑚 is defined by the multiplication of (−1)𝑛+1.
In the generality of Kloosterman sheaves for reductive groups constructed in [20], one gets a ten-

sor functor (1.3) from the category of finite-dimensional representations of SL𝑛+1 to the category
of 𝓁-adic local systems on 𝔾𝑚. If we take 𝑉 as the standard representation Std of SL𝑛+1 and the
symmetric power Sym𝑘Std, then KlSL𝑛+1(𝑉) are Kl𝑛+1(

𝑛

2
) and Sym𝑘Kl𝑛+1(

𝑛𝑘

2
), respectively.

If we take 𝑉 as the irreducible representation of the highest weight 𝜆, we get(
Kl

⊗|𝜆|
𝑛+1

)𝐺𝜆,1×sign(𝑛|𝜆|
2

)
. For simplicity, we write

Kl𝜆𝑛+1 ∶= KlSL𝑛+1(𝑉𝜆)
(
−𝑛|𝜆|

2

)
. (2.9)

Alternatively, when 𝑛 = 2, we use (2.2) to conclude that the sheaf KlSL3(𝑉𝜆1,𝜆2
) is the kernel of

Sym𝜆1Kl3 ⊗ Sym𝜆2(Kl3)
∨(𝜆1 + 𝜆2) → Sym𝜆1−1Kl3 ⊗ Sym𝜆2−1(Kl3)

∨(𝜆1 + 𝜆2 − 2). (2.10)

2.3.1 Geometric interpretations

Now, we describe Kloosterman sheaves (2.9) geometrically. Let g ∶ 𝔾𝑛
𝑚,𝔽𝑝

→ 𝔸1
𝔽𝑝
be the Laurent

polynomial
∑𝑛

𝑖=1 𝑦𝑖 +
1∏
𝑖 𝑦𝑖

and [𝑛 + 1]∶ 𝔾𝑚,𝔽𝑝
→ 𝔾𝑚,𝔽𝑝

the (𝑛 + 1)th power map.

Lemma 2.11. We have an isomorphism of 𝓁-adic sheaves

[𝑛 + 1]∗Kl𝑛+1 ≃ FT𝜓𝑝(R
𝑛−1g!𝐸)|𝔾𝑚 ,

where FT𝜓𝑝 is the Deligne-Fourier transform [26].
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𝐿-FUNCTIONS OF KLOOSTERMAN SHEAVES 13 of 60

Proof. The proof is similar to that of [16, Prop. 2.10]. Let 𝑥1, … , 𝑥𝑛+1 be the coordinates of 𝔾𝑛+1
𝑚,𝔽𝑝

in
the diagram (2.7). We perform a change of variable 𝑧 =

∏𝑛
𝑖=1 𝑥𝑖 . Let 𝑗 ∶ 𝔾𝑚,𝔽𝑝

→ 𝔸1
𝔽𝑝
. Then, we

can rewrite (2.8) as

Kl𝑛+1 = R(pr𝑧)!ℒ𝜓𝑝

(∑𝑛
𝑖=1 𝑥𝑖+

𝑧∏𝑛
𝑖=1

𝑥𝑖

)[𝑛],
where pr𝑧 is the projection from 𝔾𝑛+1

𝑚 to 𝔾𝑚,𝑧. Let 𝑡 be the coordinate of the source of the map
[𝑛 + 1]. Then,

[𝑛 + 1]∗Kl𝑛+1 ≃R(pr𝑧)!ℒ𝜓𝑝

(∑𝑛
𝑖=1 𝑥𝑖+

𝑡𝑛+1∏𝑛
𝑖=1

𝑥𝑖

)[𝑛] ≃ 𝑗∗R(pr𝑡)!ℒ𝜓𝑝(𝑡g)
[𝑛], (2.12)

where 𝑡g is seen as a function on 𝔾𝑛
𝑚 × 𝔸1

𝑡 , pr𝑡 is the projection from 𝔾𝑛
𝑚 × 𝔸1

𝑡 to 𝔸1
𝑡 , and we

performed a change of variable 𝑦𝑖 = 𝑥𝑖∕𝑡 in the last isomorphism. Then, by a calculation of the
Deligne–Fourier transform, we obtain

FT𝜓𝑝(Rg!𝐸) ≃ R(pr2)!(pr
∗
1Rg!𝐸 ⊗ℒ𝜓𝑝(𝑥𝑡)

[1])

≃ R(pr2)!(R(g × id)!pr
∗
1𝐸 ⊗ℒ𝜓𝑝(𝑥𝑡)

[1])

≃ R(pr2)!R(g × id)!(pr
∗
1𝐸 ⊗ℒ𝜓𝑝(𝑡g)

[1])

≃ R(pr𝑡)!ℒ𝜓𝑝(𝑡g)
[1],

where we used the base change theorem in the second isomorphism and the projection formula
in the third isomorphism. Themorphisms in the above calculation are illustrated in the following
diagram.

We conclude from the above isomorphisms that [𝑛 + 1]∗Kl𝑛+1 ≃ 𝑗∗ FT𝜓𝑝(Rg!𝐸)[𝑛 − 1]. □

Consider the torus 𝔾
𝑛|𝜆|+1
𝑚,𝔽𝑝

with coordinates {𝑥𝑖,𝑗 ∣ 1 ⩽ 𝑖 ⩽ |𝜆|, 1 ⩽ 𝑗 ⩽ 𝑛} and 𝑧. Let

𝑓|𝜆| ∶ 𝔾
𝑛|𝜆|+1
𝑚,𝔽𝑝

→ 𝔸1
𝔽𝑝

be the Laurent polynomial
∑|𝜆|

𝑖=1
(
∑𝑛

𝑗=1 𝑥𝑖,𝑗 +
𝑧∏
𝑗 𝑥𝑖,𝑗

) and pr𝑧 be the

projection from 𝔾
𝑛|𝜆|+1
𝑚,𝔽𝑝

to 𝔾𝑚,𝑧.
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Similarly, consider the torus 𝔾𝑛|𝜆|+1
𝑚,𝔽𝑝

with coordinates {𝑥𝑖,𝑗 ∣ 1 ⩽ 𝑖 ⩽ |𝜆|, 1 ⩽ 𝑗 ⩽ 𝑛} and 𝑡. We let

𝑓|𝜆| ∶ 𝔾
𝑛|𝜆|+1
𝑚,𝔽𝑝

→ 𝔸1
𝔽𝑝
be the Laurent polynomial

∑|𝜆|
𝑖=1

(
∑𝑛

𝑗=1 𝑥𝑖,𝑗 +
𝑡𝑛+1∏
𝑗 𝑥𝑖,𝑗

) and pr𝑡 be the projection

from 𝔾
𝑛|𝜆|+1
𝑚,𝔽𝑝

to its 𝔾𝑚,𝑡.

Proposition 2.13. We have the isomorphism of 𝓁-adic sheaves

Kl𝜆𝑛+1 ≃
(
R𝑛|𝜆|pr𝑧∗ℒ𝜓𝑝(𝑓|𝜆|)

)𝐺𝜆,sign𝑛×sign𝑛+1
and

[𝑛 + 1]∗Kl𝜆𝑛+1 ≃
(
R𝑛|𝜆|pr𝑡∗ℒ𝜓𝑝(𝑓|𝜆|)

)𝐺𝜆,sign𝑛×sign𝑛+1
,

where 𝐺𝜆 = 𝑃𝜇(𝜆) × 𝑄𝜇(𝜆) is the group defined in (2.3), and the component (𝐺𝜆, sign𝑛 × sign𝑛+1)

means taking the isotypic component with respect to
∑

𝜎∈𝑃𝜇(𝜆)
sign𝑛(𝜎)𝜎 ⋅

∑
𝜏∈𝑄𝜇(𝜆)

sign𝑛+1(𝜏)𝜏.

Proof. By [26, (1.2.2.7)], the Deligne–Fourier transform interchanges tensor product and the
convolution. Using Lemma 2.11, we have

([𝑛 + 1]∗Kl𝑛+1)
⊗|𝜆| ≃𝑗∗FT𝜓𝑝

(
((Rg!𝐸)[𝑛 − 1])⊠|𝜆|)[|𝜆|]

≃𝑗∗FT𝜓𝑝

(
(Rg

⊞|𝜆|
!

𝐸)
)
[𝑛|𝜆| − 1]

≃R(pr𝑡)!ℒ𝜓𝑝(𝑡⋅g⊞|𝜆|)[𝑛|𝜆| − 1]

≃R(pr𝑡)!ℒ𝜓𝑝(𝑓|𝜆|)[𝑛|𝜆| − 1],

where g⊞|𝜆| is the Laurent polynomial in (1.8), we used the Künneth formula in the second
isomorphism, and we performed a change of variable 𝑥𝑖,𝑗 = 𝑡 ⋅ 𝑦𝑖,𝑗 in the last isomorphism.
Notice that the Deligne–Fourier transform preserves the action of the symmetric group 𝑆|𝜆|.

However, the Künneth formula yields an extra sign character sign𝑛 on the right-hand side. By
taking the corresponding isotypic component on both sides, we get the second isomorphism.
As for the first isomorphism, similar to Remark 3.4, one has

Kl
⊗|𝜆|
𝑛+1

≃
(
[𝑛 + 1]∗([𝑛 + 1]∗Kl𝑛+1)

⊗|𝜆|)𝜇𝑛+1
≃
(
R(pr𝑡)!ℒ𝜓𝑝(𝑓|𝜆|)

)𝜇𝑛+1
[𝑛|𝜆| − 1]

≃R(pr𝑧)!ℒ𝜓𝑝(𝑓|𝜆|)[𝑛|𝜆| − 1].

At last, we add the corresponding isotypic components to both sides and get the first
isomorphism. □
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𝐿-FUNCTIONS OF KLOOSTERMAN SHEAVES 15 of 60

2.4 The local structures of Kloosterman sheaves at 0

Let 𝔸1
(0)

= {𝑠0, 𝜂0} be the henselization of 𝔸1
𝔽𝑞
at 0. The inertial group 𝐼

0
acts on the generic fiber

(Kl𝑛+1)𝜂0 . By a special case of [24, 7.0.7], the generic fiber 𝑉 = (Kl𝑛+1)𝜂0 is a tamely ramified
𝓁-adic representation of Gal(𝜂0∕𝜂0) with coefficients in 𝐸 = ℚ𝓁(𝜁𝑝). The inertia group 𝐼0 acts on
𝑉 unipotently by a single Jordan block. More precisely, there exists a basis {𝑣0, 𝑣1, … , 𝑣𝑛} onwhich
the nilpotent part of the monodromy operator 𝑁∶ 𝑉 → 𝑉(−1) and Frob0 act by

Frob0(𝑣𝑖) = 𝑞𝑛−𝑖𝑣𝑖 and 𝑁(𝑣𝑖) = 𝑣𝑖+1

for 𝑖 = 0, … , 𝑛 (for convenience, we let 𝑣𝑛+1 = 0).

Remark 2.14. The local monodromy of Kl𝑛+1|𝜂0 does not depend on the characteristic 𝑝 of the
base field 𝔽𝑞. Therefore, the local monodromy of (Kl𝜆𝑛+1)𝜂0 = 𝑉⊗|𝜆| ⋅ 𝑐𝜆 is also independent of 𝑝.
Consequently, the dimension of the 𝐼

0
-invariants of (Kl𝜆𝑛+1)𝜂0 remains independent on 𝑝.

The dimension of the 𝐼
0
-invariants of (Sym𝑘Kl𝑛+1)𝜂0 is computed in [18, Thm. 0.1].

Theorem 2.15 (Fu–Wan). As a Frob𝑞-module, the 𝐼0-invariants (Sym
𝑘Kl𝑛+1)

𝐼
0

𝜂0
is isomorphic to

⌊ 𝑛𝑘
2
⌋⨁

𝑢=0

𝐸(−𝑢)
⨁

𝑚𝑘(𝑢),

where𝑚𝑘(𝑢) are numbers characterized by the generating series,

∑
𝑢=0

𝑚𝑘(𝑢)𝑥
𝑢 =

𝑛+𝑘∏
𝑖=𝑛+1

(1 − 𝑥𝑖) ⋅
𝑘∏
𝑖=2

(1 − 𝑥𝑖)−1. (2.16)

In particular, the dimension of (Sym𝑘Kl𝑛+1)
𝐼
0

𝜂0
is
∑⌊ 𝑛𝑘

2
⌋

𝑢=0
𝑚𝑘(𝑢).

To finish, we provide the formula of dimensions of 𝐼
0
-invariants of Kl(2,1)

3
|𝜂0 and Kl(2,2)3

|𝜂0 .
Proposition 2.17.

(1) As a Frob𝑞-module Kl
(2,1)
3

|𝜂0 is isomorphic to
7⨁
𝑖=1

𝐸(−𝑖)
⨁ 6⨁

𝑖=2

𝐸(−𝑖)
⨁ 5⨁

𝑖=3

𝐸(−𝑖),

and the 𝐼
0
-invariants of Kl(2,1)

3
|𝜂0 is isomorphic to
𝐸(−1)

⨁
𝐸(−2)

⨁
𝐸(−3).

 1460244x, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70003, W

iley O
nline L

ibrary on [05/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fplms.70003&mode=


16 of 60 QIN

(2) As a Frob𝑞-module Kl
(2,2)
3

|𝜂0 is isomorphic to
10⨁
𝑖=2

𝐸(−𝑖)
⨁ 9⨁

𝑖=3

𝐸(−𝑖)
⨁ 8⨁

𝑖=4

𝐸(−𝑖)
⨁

2
⨁

𝐸(−6),

and the 𝐼
0
-invariants of Kl(2,2)

3
|𝜂0 is isomorphic to

𝐸(−2)
⨁

𝐸(−3)
⨁

𝐸(−4)
⨁

2
⨁

𝐸(−6).

Proof. The proof is similar to that of Theorem 2.15. We provide the proof for (1), while the proof
for (2) is similar.
The nilpotent part 𝑁 of the monodromy operator on 𝑉 = (Kl3)𝜂0 can be enhanced to a

Lie algebraic representation 𝜌 of sl2, such that 𝜌
(
0 0
1 0

)
= 𝑁. Similarly, the nilpotent part of

the monodromy operator on (Sym𝑘Kl3)𝜂0 can be viewed as an sl2-representation 𝜌𝑘 with

𝜌𝑘

(
0 0
1 0

)
= Sym𝑘𝑁. By the representation theory of sl2, we can decompose (Sym𝑘Kl3)𝜂0 into irre-

ducible representations of sl2 as
⨁⌊ 𝑘

2
⌋

𝑖=0
Sym2𝑘−2𝑖𝐸2. Moreover, each Sym2𝑘−2𝑖𝐸2 is isomorphic

to
⨁2𝑘−𝑖

𝑗=𝑖 𝐸(−𝑗) as a Frob𝑞-module. As for the subspace of 𝐼0-invariants of (Sym
𝑘Kl𝑛+1)𝜂0 , it is

identified with the kernel of Sym𝑘𝑁, which is
⨁⌊ 𝑘

2
⌋

𝑖=0
𝐸(−𝑖).

Back to Kl(2,1)
3

and we omit the Tate twists for now. Using the alternative description (2.10),
to determine the local structure of Kl(2,1)

3
, it is sufficient to establish that of Sym2Kl3 ⊗ Kl∨3 . As

sl2-representations, we have isomorphisms

𝑉 = 𝑉∨ = Sym2𝐸2 and Sym2𝑉 = Sym4𝐸2
⨁

𝐸.

By the formula,

Sym𝑎𝐸2 ⊗ Sym𝑏𝐸2 = Sym𝑎+𝑏𝐸2
⨁

Sym𝑎+𝑏−2𝐸2
⨁

⋯
⨁

Sym|𝑎−𝑏|𝐸2
from [19, Exe. 11.11], one concludes that

Sym2𝑉 ⊗ 𝑉∨ = Sym6𝐸2
⨁

Sym4𝐸2
⨁

(Sym2𝐸2)
⨁

2.

By removing one piece of Sym2𝐸2 from Sym2𝑉 ⊗ 𝑉∨ and adding back the Tate twists, we get the
expression of Kl(2,1)

3
|𝜂0 as well as that of Kl(2,1)3

|𝐼0𝜂0 . □

2.5 The local structures of Kloosterman sheaves at∞

2.5.1 Notation

Let 𝑝, 𝓁, 𝔽𝑞, and 𝐸 be as in Section 2.3. We fix a primitive (𝑛 + 1)th root of unity 𝜁 = 𝜁𝑛+1 in 𝔽𝑝.
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(1) For multi-indices 𝐼 ∈ ℕ𝑛+1, we denote by 𝐶𝐼 =
∑𝑛

𝑖=0 𝐼𝑖 ⋅ 𝜁
𝑖 and𝑚𝐼 =

∑𝑛
𝑖=0 𝑖 ⋅ 𝐼𝑖 .

(2) Let 𝑣0, … , 𝑣𝑛 be a basis of𝐸𝑛+1.We denote by𝜎 = (01⋯𝑛) ∈ 𝑆𝑛+1, acting on 𝑣𝑖 by𝜎𝑣𝑖 ∶= 𝑣𝜎(𝑖).
For a multi-index 𝐼 ∈ ℕ𝑛+1, we denote by 𝑣𝐼 = 𝑣

𝐼0
0
⋯ 𝑣

𝐼𝑛
𝑛 .

(a) Let 𝑑(𝑘, 𝑛 + 1, 𝑝) be the cardinality of the set 𝐴0
𝑘
∶= {𝐼 ∣ |𝐼| = 𝑘, 𝐶𝐼 = 0}.

(b) We denote by 𝑎(𝑘, 𝑛 + 1, 𝑝) the cardinality of the set of 𝜎-orbits in 𝐴0
𝑘
.

(c) We denote by 𝑏(𝑘, 𝑛 + 1, 𝑝) 𝜎-orbits in 𝐴0
𝑘
such that the subspace spanned by the orbit is

not zero.
(d) We denote by 𝑑(𝑘, 𝑛 + 1), 𝑎(𝑘, 𝑛 + 1), and 𝑏(𝑘, 𝑛 + 1) the generic values of 𝑑(𝑘, 𝑛 + 1, 𝑝),

𝑎(𝑘, 𝑛 + 1, 𝑝), and 𝑏(𝑘, 𝑛 + 1, 𝑝) as 𝑝 varies respectively.

Fu and Wan partly determined the local structure of Sym𝑘Kl𝑛+1 in [17, Thm. 2.5 & Thm. 3.1].

Theorem 2.18 (Fu–Wan).

(1) If 𝑝 ∤ 𝑛 + 1 and 2𝑛 ∣ 𝑞 − 1, we have an isomorphism of Frob𝑞-modules

(Sym𝑘Kl𝑛+1 ∣𝜂∞⊗𝔽𝑞
)𝐼∞

(
𝑛𝑘

2

)
≃

⎧⎪⎨⎪⎩
𝐸
⨁

𝑎(𝑘,𝑛+1,𝑝) 2 ∣ 𝑛,

0 2 ∤ 𝑛𝑘,

𝐸
⨁

𝑏(𝑘,𝑛+1,𝑝) 2 ∤ 𝑛 and 2 ∣ 𝑘.

(2) The Swan conductor of Sym𝑘Kl𝑛+1 at∞ is 1

𝑛+1

((𝑛+𝑘
𝑛

)
− 𝑑(𝑘, 𝑛 + 1, 𝑝)

)
.

Similar to Proposition 2.17, we study the local structures Kl(2,1)
3

and Kl(2,2)
3

at∞.

Proposition 2.19.

(1) The Swan conductor of Kl(2,1)
3

at∞ is 5 if 𝑝 ≠ 2, 3, 7, and is 4 if 𝑝 = 2, 7. The dimension of the
invariants (Kl(2,1)

3
∣𝜂∞)

𝐼∞ is 0 if 𝑝 ≠ 2, 7, and is 1 if 𝑝 = 2, 7.
(2) The Swan conductor of Kl(2,2)

3
at ∞ is 8 if 𝑝 ≠ 2, 3, and is 6 if 𝑝 = 2. The dimension of the

invariants (Kl(2,2)
3

∣𝜂∞)
𝐼∞ is 1 if 𝑝 ≠ 2, 3, and is 3 if 𝑝 = 2.

Proof. The proof is similar to that of [17, Thm. 3.1]. We provide proof for the first statement and
omit the proof of the second one.
Swan conductors: According to the alternative description (2.10), it suffices to compute the Swan
conductors of Sym2Kl3 ⊗ Kl∨3 and Kl3. When 3 ≠ 𝑝, after passing to a finite extension 𝑘 of 𝔽𝑞, by
Lemma 1.5 in [17], we have

[3]∗Kl3|𝜂∞⊗𝑘(1) = ℒ𝜓𝑘(3𝑡)

⨁
ℒ𝜓𝑘(3𝜁3𝑡)

⨁
ℒ𝜓𝑘(3𝜁

2
3
𝑡),

where [3]∶ 𝔾𝑚 → 𝔾𝑚 is the cubic map and 𝜁3 is a primitive third root of unity in 𝔽𝑝.
Then, we can get the local structure of [3]∗(Sym𝜆1Kl3 ⊗ Sym𝜆2Kl∨3 ) as

⨁𝑁
𝑖=1ℒ𝜓(𝐶𝑖𝑡)

for some
𝑁 ∈ ℕ and some 𝐶𝑖 ∈ 𝔽𝑝. Since each ℒ𝜓(𝐶𝑖𝑡)

has Swan conductor 1 if 𝐶𝑖 ≠ 0, and has Swan
conductor 0 if 𝐶𝑖 = 0, we conclude that

Sw∞([3]
∗(Sym𝜆1Kl3 ⊗ Sym𝜆2Kl∨3 )) = #{𝑖|𝐶𝑖 ≠ 0}.
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By [24, 1.13.1], the Swan conductor of Sym𝜆1Kl3 ⊗ Sym𝜆2Kl∨3 is thus #{𝑖|𝐶𝑖 ≠ 0}∕3.
By direct computation, we obtain

[3]∗(Sym2Kl3 ⊗ Kl∨3 |𝜂∞⊗𝑘)(3) = ℒ
⨁

3

𝜓(3𝑡)

⨁
ℒ

⨁
3

𝜓(3𝜁3𝑡)

⨁
ℒ

⨁
3

𝜓(3𝜁2
3
𝑡)⨁

ℒ𝜓(−6𝑡)

⨁
ℒ𝜓(−6𝜁3𝑡)

⨁
ℒ𝜓(−6𝜁2

3
𝑡)⨁

ℒ𝜓(3(2−𝜁3)𝑡)

⨁
ℒ𝜓(3𝜁3(2−𝜁3)𝑡)

⨁
ℒ𝜓(3𝜁2

3
(2−𝜁3)𝑡)⨁

ℒ𝜓(3(2𝜁3−1)𝑡)

⨁
ℒ𝜓(3𝜁3(2𝜁3−1)𝑡)

⨁
ℒ𝜓(3𝜁2

3
(2𝜁3−1)𝑡)

.

(2.20)

Depending on the value of 𝑝, the Swan conductor of Kl(2,1)
3

can be computed as follows.

∙ If 𝑝 ≠ 2, 7, the numbers 𝐶 appearing in components ℒ𝜓(𝐶𝑡) in (2.20) are all nonzero. So,
Sw∞(Kl

(2,1)
3

) = rk(Sym2Kl3 ⊗ Kl∨3 )∕3 − Sw∞(Kl3) = 6 − 1 = 5.
∙ If 𝑝 = 2, then only 6, 6𝜁3, and 6𝜁23 are 0 in 𝔽𝑝. So Sw∞(Kl

(2,1)
3

) = 4.
∙ If 𝑝 = 7, we can take 𝜁3 = 2. So, only 2 − 𝜁3, 𝜁3(2 − 𝜁3) and 𝜁2

3
(2 − 𝜁3) are 0 in 𝔽𝑝. Hence,

Sw∞(Kl
(2,1)
3

) = 4.

Dimension of the invariants: Let 𝑘 be a finite extension of 𝔽𝑞 containing 𝜁3. Consider the
extension 𝑘(𝑡) = 𝑘(𝑧)[𝑡]∕(𝑡3 − 𝑧) of 𝑘(𝑧), and the extension 𝑘(𝑦) = 𝑘(𝑡)[𝑦]∕(𝑦𝑞 − 𝑦 − 𝑡) of 𝑘(𝑡).
The Galois group 𝐻 = Gal(𝑘(𝑦)∕𝑘(𝑡)) is isomorphic to 𝔽𝑞, and is a normal subgroup of 𝐺 =

Gal(𝑘(𝑦)∕𝑘(𝑧)). The quotient 𝐺∕𝐻 is Gal(𝑘(𝑡)∕𝑘(𝑧)) = ℤ∕2ℤ.
For each 𝑎 ∈ 𝔽𝑞, we denote by g𝑎 the element in 𝐻, such that g𝑎 ⋅ 𝑦 = 𝑦 − 𝑎. We choose an

element g ∈ 𝐺 such that g ⋅ 𝑦 = 𝜁3𝑦. It follows that g3 = g0 = id and g ∉ 𝐻.
Let𝑊 be a one-dimensional 𝐸-vector space and choose 𝑣0 as a basis. We define an action of𝐻

on𝑊 by

g𝑎 ⋅ 𝑣0 = 𝜓𝑘(−3𝑎)𝑣0.

By the construction, as an 𝐻-representation, 𝑊 is isomorphic to ℒ𝜓𝑘(3𝑡)
. Then, the induced

𝐺-representation

𝑉 ∶= Ind𝐺𝐻𝑊 =

2⨁
𝑖=0

g 𝑖𝑊,

is identified with [3]∗
(
ℒ𝜓𝑘(3𝑡)

||𝜂∞⊗𝑘

)
. Let 𝑣𝑖 ∶= g 𝑖𝑣0. The set {𝑣0, 𝑣1, 𝑣2} form a basis of 𝑉, and the

action of𝐻 on 𝑣𝑖 is given by

g𝑎 ⋅ 𝑣𝑖 = g 𝑖 ⋅ g−𝑖g𝑎,𝜇g
𝑖 ⋅ 𝑣0 = g 𝑖 ⋅ g𝜁𝑖

3
𝑎 ⋅ 𝑣0 = 𝜓𝑘

(
−3𝜁𝑖3𝑎

)
𝑣𝑖,

and the action of g on 𝑉 is given by g𝑣𝑖 = 𝑣𝑖+1 where 𝑣3 = 𝑣0.
It follows that {𝑣𝑎𝑣𝑏 ⊗ 𝑣∨𝑐 ∣ 𝑎 ⩽ 𝑏, 0 ⩽ 𝑎, 𝑏, 𝑐 ⩽ 2} form a basis of

Sym2𝑉 ⊗ 𝑉∨ = Sym2Kl3 ⊗ Kl∨3 |𝜂∞⊗𝑘(3).
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To calculate the dimension of (Kl(2,1)
3

∣𝜂∞)
𝐼∞ , it suffices to calculate the dimension of the

𝐺-invariant subspace

(Sym2𝑉 ⊗ 𝑉∨)𝐺.

Let 𝑤 =
∑

𝑎,𝑏,𝑐 𝛼𝑎,𝑏,𝑐𝑣𝑎𝑣𝑏 ⊗ 𝑣∨𝑐 , then

g𝑎 ⋅ 𝑤 =
∑
𝑎,𝑏,𝑐

𝜓𝑘
(
−3

(
𝜁𝑎3 + 𝜁𝑏3 − 𝜁𝑐3

)
𝑎
)
𝛼𝑎,𝑏,𝑐𝑣𝑎𝑣𝑏 ⊗ 𝑣∨𝑐 ,

and

g ⋅ 𝑤 =
∑
𝑎,𝑏,𝑐

𝛼𝑎+1,𝑏+1,𝑐+1𝑣𝑎𝑣𝑏 ⊗ 𝑣∨𝑐 .

∙ If 𝑝 ≠ 2, 3, 7, then (𝜁𝑎
3
+ 𝜁𝑏

3
− 𝜁𝑐

3
) is never 0 in 𝔽𝑝. So, there are no fixed vectors in Sym2𝑉 ⊗ 𝑉∨.

∙ If 𝑝 = 2, then 𝑤 =
∑2

𝑖=0 𝑣𝑖𝑣𝑖+1 ⊗ 𝑣∨
𝑖+2

spans (Sym2𝑉 ⊗ 𝑉∨)𝐺 .
∙ If 𝑝 = 7, then 𝜁3 = 2 in this case, and 𝑤 =

∑2
𝑖=0 𝑣𝑖𝑣𝑖 ⊗ 𝑣∨

𝑖+2
spans (Sym2𝑉 ⊗ 𝑉∨)𝐺 .

In conclusion, the dimension of (Kl(2,1)
3

∣𝜂∞)
𝐼∞ is 0 if 𝑝 ≠ 2, 3, 7 and is 1 if 𝑝 = 2, 7. □

Remark 2.21. In Section 2.6.2, we will determine the local monodromy group of Kl3 at 𝑝 = 3.
As a consequence, we can prove that when 𝑝 = 3, the Swan conductor of Kl(2,1)

3
at∞ is 5 and the

dimension of the invariants (Kl(2,1)
3

∣𝜂∞)
𝐼∞ is 0. The argument is similar to those of Proposition 2.32

and Proposition 2.33.

2.6 The dimensions of the middle 𝓵-adic cohomology

In this subsection, our objective is to calculate the dimension of the middle 𝓁-adic cohomology of
Sym𝑘Kl𝑛+1. Proposition 2.22 provides the dimensions when 𝑝 is coprime to 𝑛 + 1.
However, the case that 𝑝 ∣ 𝑛 + 1 remains mysterious because the local monodromy group

of Kl𝑛+1 is still unknown. When 𝑛 = 1, the dimension in the case of 𝑝 = 2 was computed in
[41, Cor. 4.3.5]. Following his method, we give a dimension formula when 𝑛 = 2 and 𝑝 = 3 in
Section 2.6.2. The key idea is to use the complete classification of finite subgroups of SL3 to find
the local monodromy group at∞ of Kl3.

2.6.1 When gcd(𝑝, 𝑛 + 1) = 1

Proposition 2.22. When 𝑝 is coprime to 𝑛 + 1, the formula of the dimension of the middle 𝓁-adic
cohomologyH1

�́�𝑡,mid
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) is

1

𝑛 + 1

((
𝑘 + 𝑛

𝑛

)
− 𝑑(𝑘, 𝑛 + 1, 𝑝)

)
−

⌊ 𝑛𝑘
2
⌋∑

𝑢=0

𝑚𝑘(𝑢) + 2𝛿(𝑘, 𝑝) −

⎧⎪⎨⎪⎩
𝑎(𝑘, 𝑛 + 1, 𝑝) 2 ∣ 𝑛,

0 2 ∤ 𝑛𝑘,

𝑏(𝑘, 𝑛 + 1, 𝑝) else,
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where the number 𝛿 (𝑘, 𝑝) is

{
1 𝑝 = 2 and 2 ∣ 𝑘,
0 else ,

the numbers 𝑚𝑘(𝑢) are defined in (2.16), and

the numbers 𝑑(𝑘, 𝑛 + 1, 𝑝), 𝑎(𝑘, 𝑛 + 1, 𝑝), and 𝑏(𝑘, 𝑛 + 1, 𝑝) are defined in Section 2.5.1.

Proof. By the long exact sequence (2.5), the dimension of H1
�́�𝑡,mid

(𝔾𝑚,𝔽𝑝
, Sym𝑘Kl𝑛+1) is given by

H1
�́�𝑡
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) + dimSym𝑘Kl
𝐺geom
𝑛+1

− dimSym𝑘Kl
𝐼
0

𝑛+1
− dimSym𝑘Kl

𝐼∞
𝑛+1

.

By (2.4), dimH1
�́�𝑡
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) − H0
�́�𝑡
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) = Sw(Sym𝑘Kl𝑛+1), which is
calculated in Theorem 2.18. As for the invariants of the global monodromy group, it is 𝐸(𝑛𝑘∕2) if
𝑝 = 2 and 𝑘 is even, and 0 otherwise by combining [24, Thm. 11.1] and [18, Lem. 0.2]. Next, the
dimensions of the invariants of the inertia groups at 0 and ∞ are summarized in Theorem 2.15
and Theorem 2.18 if 𝑝 ∤ 𝑛 + 1. At last, combining everything together, we get the dimension of
the middle cohomology. □

2.6.2 When 𝑛 = 2 and 𝑝 = 3

The classification of finite subgroups of SL3
Let 𝜁9 be a primitive ninth root of unity, and we put 𝜔 = 𝜁6

9
and 𝜀 = 𝜁4

9
. We define the following

matrices in SL3(ℂ)

𝑆 =
⎛⎜⎜⎝
1 0 0

0 𝜔 0

0 0 𝜔2

⎞⎟⎟⎠, 𝑇 =
⎛⎜⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎟⎠,
𝑈 =

⎛⎜⎜⎝
𝜀 0 0

0 𝜀 0

0 0 𝜀𝜔

⎞⎟⎟⎠, 𝑉 =
1

𝜔 − 𝜔2

⎛⎜⎜⎝
1 1 1

1 𝜔 𝜔2

1 𝜔2 𝜔

⎞⎟⎟⎠.
Let

𝐺108 =< 𝑆, 𝑇, 𝑉 >⊂ SL3,

𝐺216 =< 𝑆, 𝑇, 𝑉,𝑈𝑉𝑈−1 >⊂ SL3,

and

𝐺648 =< 𝑆, 𝑇, 𝑉,𝑈 >⊂ PGL3.

We summarize the complete classification of solvable finite subgroups of SL3(ℂ) from [29, Ch.
XII] in the following theorem.

Theorem 2.23. If 𝐺 is a finite solvable subgroup of SL3(ℂ), it is isomorphic to one of the following
groups:

(A) diagonal abelian groups,
(B) groups arising from finite subgroups of GL2,
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(C) groups generated by groups of type (A) and the element 𝑇,
(D) groups generated by groups of type (C) and a matrix of the form

𝑄𝑎,𝑏,𝑐 ∶=
⎛⎜⎜⎝
𝑎 0 0

0 0 𝑏

0 𝑐 0

⎞⎟⎟⎠
for some roots of unity satisfying 𝑎𝑏𝑐 = −1,

(E) the group 𝐺108,
(F) the group 𝐺216,
(G) the group 𝐺648.

The local monodromy at∞ when 𝑝 = 3

Let 𝑗 ∶ 𝔾𝑚,𝔽3
↪ ℙ1

𝔽3
be the inclusion. Restricting the 𝓁-adic sheaf 𝑗∗Kl3 to 𝜂∞, we have a represen-

tation 𝜌∶ 𝐼∞ → SL3(ℚ𝓁) of the inertia group at∞. Recall that Kl3 is totally wild at∞ with Swan
conductor 1. We want to determine the local monodromy group of Kl3 at ∞, namely, the finite
solvable subgroup 𝐷0 = 𝜌(𝐼∞) of SL3. The group admits a lower numbering filtration {𝐷𝑖} termi-
nating at 𝐷𝑁 , such that #𝐷0∕𝐷1 is coprime to 3, 𝐷1 is the 3-Sylow subgroup of 𝐷0, and 𝐷𝑖∕𝐷𝑖+1

are cyclic abelian of order 3 for 𝑖 ⩾ 1.

Theorem 2.24. The image of 𝐼∞ under 𝜌 is isomorphic 𝐺108, whose lower numbering filtration is
given by

𝐷0 ⊳ 𝐷1 =< 𝑆, 𝑇 > ⊳𝐷2 = ⋯ = 𝐷4 =< 𝜔I3 > ⊳{1}.

Proof. By [24, Lem. 1.19], the local monodromy group 𝐷0 = 𝜌(∞) satisfies the following
conditions:

(a) 𝐷0 acts on 𝑉 = Kl3 ∣𝜂∞ irreducibly,
(b) 𝐷0 admits no faithful ℚ𝓁-linear representation of dimension smaller than 3.

The groups of type (A) are abelian groups. As irreducible representations of abelian groups are
all one-dimensional, the group 𝐷0 cannot be isomorphic to the groups of type (A) due to condi-
tion (a). The groups of type (B) are groups induced from subgroups of GL2, which admit faithful
ℚ𝓁-linear representations of dimension 2, which violates condition (b).
We establish the following lemma to eliminate more possibilities.

Lemma 2.25. Let 𝑉 = Kl3 ∣𝜂∞ . Then, the Swan conductor of Sym
3𝑉 is 2 + dim(Sym3𝑉)𝐼∞ .

Proof. As the symmetric power of the standard representation of SL3 is irreducible, the invariants
(Sym3Kl3)

SL3 (isomorphic to H0
�́�𝑡
(𝔾𝑚,𝔽3

, Sym𝑘Kl3)) are 0. By the Grothendieck–Ogg–Shafarevich
formula, the dimension of H1

�́�𝑡
(𝔾𝑚,𝔽3

, Sym3Kl3) is equal to the Swan conductor of Sym3𝑉 =

(Sym3Kl3)𝜂∞ , which is smaller or equal to ⌊ 13 ⋅ rk Sym3Kl3⌋ = 3 because the breaks of Sym3Kl3

are at most 1
3
.
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Considering the long exact sequence (2.5), we have

0 →
(
Sym3Kl3

)SL3 → (
Sym3Kl3 ∣𝜂0

)𝐼
0
⨁(

Sym3Kl3 ∣𝜂∞

)𝐼∞
→ H1

�́�𝑡,c

(
𝔾𝑚,𝔽3

, Sym3Kl3

)
→ H1

�́�𝑡,mid

(
𝔾𝑚,𝔽3

, Sym3Kl3

)
→ 0.

Recalling that the dimension of (Sym3Kl3 ∣𝜂0)
𝐼
0 is 2 by Theorem 2.15, we deduce from the exact

sequence that

3 ⩾ dimH1
�́�𝑡

(
𝔾𝑚,𝔽3

, Sym3Kl3

)
= 2 + dimH1

�́�𝑡,mid

(
𝔾𝑚,𝔽3

, Sym3Kl3

)
+ dim

(
Sym3Kl3 ∣𝜂∞

)𝐼∞
.

If the middle cohomology is nonzero, it is one-dimensional. By the computations in Section A.1.1,
we obtain

Tr
(
Frob ∣ H1

�́�𝑡,mid

(
𝔾𝑚,𝔽3

, Sym3Kl3

))
= −

(
𝑚3
3(3) + 1 + 𝑝2

)
= 0.

We arrive at a contradiction, as H1
�́�𝑡,mid

(𝔾𝑚,𝔽3
, Sym3Kl3) is pure of weight 10. Consequently, the

Swan conductor is 2 + dim(Sym3𝑉)𝐼∞ . □

Now assume that 𝐷0 is of type (C) or type (D). The representation Sym3𝑉 is the direct sum of
three subrepresentations 𝑉1 = span{𝑣3

0
, 𝑣3

1
, 𝑣3

2
}, 𝑉2 = span{𝑣2

𝑖
𝑣𝑗}𝑖≠𝑗 , and 𝑉3 = span{𝑣0𝑣1𝑣2}.

∙ If𝐷0 is of type (C), the action of𝐷0 has fixed vectors in each𝑉𝑖 . So,dim(Sym3𝑉)𝐼∞ ⩾ 3. Applying
Lemma 2.25, we find that

5 ⩽ 2 + dim(Sym3𝑉)𝐼∞ = Sw(Sym3𝑉) ⩽ 3.

∙ If 𝐷0 is of type (D), the operators 𝑇 and 𝑄𝑎,𝑏,𝑐 have no fixed vectors in each 𝑉𝑖 . As a result,
the subspace of invariants (Sym3𝑉)𝐼∞ has dimension 0 and 𝑉𝑖 are all totally wild. Using
Lemma 2.25, we deduce that

2 = Sw(Sym3𝑉) =

3∑
𝑖=1

Sw(𝑉𝑖) ⩾ 3,

which is again not possible.

The group 𝐷0 also cannot be isomorphic to groups of type (G) because 𝐺648 has no normal
subgroup of order 81, that is, a normal 3-Sylow subgroup. The possible orders of normal subgroups
of 𝐺648 are 1,3,27,54,216, and 648 as determined by a group-theoretic computation.
Now the remaining cases are the groups of type (E) and (F).

Lemma 2.26. If 𝐷0 is of type (E) or (F), the Swan conductor of Sym6𝑉 is 6.

Proof. From the above discussion, the group𝐷0 is either the group 𝐺108 or 𝐺216. In both cases, the
3-Sylow subgroup 𝐷1 of 𝐷0 is generated by matrices 𝑆 and 𝑇, of order 27. The group 𝐷1 has only 3
subgroups of order 9. They are

𝐻1 =< 𝑆, 𝜔𝐼3 >, 𝐻2 =< 𝑇, 𝜔𝐼3 > and 𝐻3 =< 𝑆𝑇, 𝜔𝐼3 > .
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Since 𝑉 is totally wild, the last nontrivial group 𝐷𝑁 in the ramification filtration has no invariant
vectors, that is, 𝑉𝐷𝑁 = 0. Since 𝑆, 𝑆𝑇, and 𝑇 have nonzero fixed vectors 𝑣1, 𝑣1 + 𝑤2𝑣2 + 𝑣3 and
𝑣1 + 𝑣2 + 𝑣3, respectively, the group 𝐷𝑁 is either𝐻𝑖 or < 𝜔𝐼3 >.
There exist nonnegative integers 𝑎, 𝑏, 𝑐 such that the lower numbering filtration is of the form

𝐷0 ⊳ 𝐷1 = ⋯ = 𝐷𝑎 ⊳⋯⊳ 𝐷𝑎+𝑏 ⊳⋯ = 𝐷𝑎+𝑏+𝑐 ⊳ {1},

where 𝐷𝑎+1 = ⋯𝐷𝑎+𝑏 is𝐻1,𝐻2 or𝐻3 if 𝑏 ≠ 0, and 𝐷𝑎+𝑏+1 = ⋯ = 𝐷𝑎+𝑏+𝑐 =< 𝜔𝐼3 > if 𝑐 ≠ 0.
We know that Sw(𝑉) = 1 and Sw(Sym3𝑉) = 2 or 3 according to (2.25). Then,

1 = Sw(𝑉) =

∞∑
𝑖=1

dim𝑉 − dim𝑉𝐷𝑖

[𝐷0 ∶ 𝐷𝑖]
=

1

[𝐷0 ∶ 𝐷1]

(
3 ∗ 𝑎 + 3 ∗

𝑏

3
+ 3 ∗

𝑐

9

)

and

2 or 3 = Sw(Sym3𝑉) =

∞∑
𝑖=1

dimSym3𝑉 − dimSym3𝑉𝐷𝑖

[𝐷0 ∶ 𝐷𝑖]
=

1

[𝐷0 ∶ 𝐷1]

(
8 ∗ 𝑎 + 6 ∗

𝑏

3
+ 0 ∗

𝑐

9

)
.

If 𝐷0 = 𝐺108, the only possibility is (𝑎, 𝑏, 𝑐) = (1, 0, 3). If 𝐷0 = 𝐺216, we have two possibilities
(𝑎, 𝑏, 𝑐) = (2, 0, 6) or (1,4,3). In all cases, the number 𝑐 is nonzero, and the last nontrivial group
𝐷𝑁 = 𝐷𝑎+𝑏+𝑐 is < 𝜔𝐼3 > of order 3. Also, we obtain in all cases that Sw(Sym3𝑉) = 2.
Now consider the Swan conductor of Sym6𝑉 = Sym6(Kl3)𝜂∞ . In this case, 𝐷𝑁 acts trivially on

Sym6𝑉, so it suffices to compute dimSym6𝑉𝐷1 and dimSym6𝑉𝐻𝑖 (if 𝑏 ≠ 0, 𝐷𝑎+1 = 𝐻𝑖 for some
𝑖 ∈ {1, 2, 3}). Let {𝑣𝑖}𝑖=0,1,2 be the canonical basis of 𝑉 and 𝑓𝑖 = 𝑣0 + 𝜔𝑖𝑣1 + 𝜔2𝑖𝑣2 for 𝑖 = 0, 1, 2.
Then, the actions of 𝑆 and 𝑇 on the basis {𝑓𝑖} are 𝑆𝑓𝑖 = 𝑓𝑖+1 and 𝑇𝑓𝑖 = 𝜔−𝑖𝑓𝑖 , where 𝑓3 ∶= 𝑓0.
Consider the set of multi-indexes

𝐴 ∶= {𝐼 = (𝐼0, 𝐼1, 𝐼2) ∈ ℤ3
⩾0 ∣ |𝐼| ∶= 𝐼0 + 𝐼1 + 𝐼2 = 6},

on which 𝜎 = (123) ∈ 𝑆3 acts. For any vector 𝑓 =
∑

𝐼∈𝐴 𝑎𝐼𝑓
𝐼 in Sym𝑘𝑉, we have

𝑆𝑓 =
∑
𝐼∈𝐴

𝑎𝜎−1𝐼𝑓
𝐼 and 𝑇𝑓 =

∑
𝐼∈𝐴

𝑎𝐼𝜔
𝐼2−𝐼1𝑓𝐼.

So, if 𝑓 ∈ Sym6𝑉𝐷1 , that is, 𝑆𝑓 = 𝑇𝑓 = 𝑓, the vector 𝑓 is contained in the span of
{
∑2

𝑖=0 𝑓
𝜎𝐼 ∣ 𝐼0 ≡ 𝐼1 ≡ 𝐼2 mod 3}. The dimension of the subspace of invariants (Sym3𝑉)𝐷1 is 4.

Similarly, we can compute that dimSym6𝑉𝐻𝑖 = 10 for 𝑖 ∈ {1, 2, 3}.
In conclusion, for (𝑎, 𝑏, 𝑐) = (1, 0, 3), (2,0,6), and (1,4,3), the Swan conductors are

1

4

(
24 ∗ 1 + 18 ∗ 0 + 0 ∗

3

9

)
=
1

8

(
24 ∗ 2 + 18 ∗ 0 + 0 ∗

6

9

)
=
1

8

(
24 ∗ 1 + 18 ∗

4

3
+ 0 ∗

3

9

)
= 6.

□

Lemma 2.27. The dimension of (Sym6𝑉)𝐼∞ is 2 if 𝐷0 = 𝐺108 and is 1 if 𝐷0 = 𝐺216.
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Proof. Let𝐷0 = 𝜌(𝐼∞) be either𝐺108 or𝐺216, which is a normal subgroup of𝐺 = 𝐺216 or𝐺 = 𝐺648,
respectively. Let 𝑎 ∈ 𝐺∕𝐷0 be the class of an element 𝑎 ∈ 𝐺, then

Tr(𝑎 ∣ (Sym𝑘𝑉)𝐼∞) =
1

#𝐷0

∑
g∈𝑎⋅𝐷0

Tr(g ∣ Sym𝑘𝑉). (2.28)

In particular, if we let 𝑎 = 1, we get∑
dim(Sym𝑘𝑉)𝐼∞𝑥𝑘 =

1

#𝐷0

∑
g∈𝐷0

−1

𝑃g ,𝑉(𝑥)
, (2.29)

where 𝑃g ,𝑉(𝑥) = det(𝑥 ⋅ g − 1 ∣ 𝑉) is the characteristic polynomial of g . This can be easily
computed by Sagemath† [38]. Therefore, we deduce

⎧⎪⎪⎨⎪⎪⎩
𝑃(𝑥) = −

1 − 𝑥3 + 𝑥6 + 𝑥12 − 𝑥15 + 𝑥18

(−1 + 𝑥3)3(1 + 𝑥3)2(1 + 𝑥6)
if 𝐷0 = 𝐺108;

𝑃(𝑥) = −
1 − 𝑥3 + 𝑥9 − 𝑥15 + 𝑥18

(−1 + 𝑥3)3(1 + 𝑥3)2(1 + 𝑥6)
if 𝐷0 = 𝐺216.

(2.30)

In particular, their coefficients of 𝑡6 are 2 and 1, respectively. □

By Section A.1.1, we have

Tr
(
Frob ∣ H1

�́�𝑡

(
𝔾𝑚,𝔽3

, Sym6Kl3

))
= −820.

Combining Theorem 2.15 and [24, Thm. 7.0.7], we deduce that

Tr
(
Frob ∣

(
Sym6Kl3

)𝐼
0

)
= 1 + 𝑝2 + 𝑝4 + 𝑝6 = 820.

Using the long exact sequence (2.5), we conclude that

Tr
(
Frob ∣ H1

�́�𝑡,mid

(
𝔾𝑚,𝔽3

, Sym6Kl3

))
= −Tr

(
Frob ∣

(
Sym6Kl3

)𝐼∞), (2.31)

and

dimH1
�́�𝑡,mid

(
𝔾𝑚,𝔽3

, Sym6Kl3

)
= 2 − dim

(
Sym6Kl3

)𝐼∞.
If 𝐷0 = 𝐺216, then both dim(Sym6Kl3)

𝐼∞ and the middle cohomology are one-dimensional.
However, by (2.31), since (Sym6Kl3)

𝐼∞ is pure of weight 12 and H1
�́�𝑡,mid

(𝔾𝑚,𝔽3
, Sym6Kl3) is pure

of weight 13, we get a contradiction.
In conclusion, the only possibility is 𝐷0 = 𝐺108. The ramification filtration of 𝐷0 is given in

terms of the triple (1,0,3) in the proof of Lemma 2.26. □

† The code can be found on my web page.
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The dimension of the middle cohomology

Proposition 2.32. When 𝑝 = 3, the Swan conductor of the action of 𝐼∞ on (Sym𝑘Kl3) ∣𝜂∞ is given
by

Swan∞(Sym
𝑘Kl3) =

⎧⎪⎪⎨⎪⎪⎩
1

3

(
𝑘 + 2

2

)
3 ∤ 𝑘,

1

4

((
𝑘 + 2

2

)
−
𝑑(𝑘, 3, 3) + 2

3

)
3 ∣ 𝑘.

Proof. Recall that we denote 𝑉 = Kl3 ∣𝜂∞ . If 3 ∤ 𝑘, then there is no fixed vector of Sym
𝑘𝑉 under

the action of the group < 𝜔𝐼3 >. So, the Swan conductor can be expressed as

∞∑
𝑖=1

dimSym𝑘𝑉 − 0

[𝐷0 ∶ 𝐷𝑖]
=
dimSym𝑘𝑉

3
⋅
∑ 3

[𝐷0 ∶ 𝐷𝑖]
=
1

3
⋅
(
𝑘 + 2

2

)
.

If 3 ∣ 𝑘, the situation is similar to the case where 𝑘 = 6. In this case, 𝐷4 =< 𝜔𝐼3 > acts trivially
on Sym𝑘𝑉. The dimension of Sym𝑘𝑉𝐷1 is computed in terms of invariant vectors under the
action of 𝑆 and 𝑇. We again let {𝑣𝑖}𝑖=0,1,2 be the canonical basis of𝑉 and 𝑓𝑖 = 𝑣0 + 𝜔𝑖𝑣1 + 𝜔2𝑖𝑣2 for
𝑖 = 0, 1, 2. If 𝑆𝑓 = 𝑇𝑓 = 𝑓, the vector 𝑓 is contained in the span of the set
{
∑2

𝑖=0 𝑓
𝜎𝐼 ∣ 𝐼0 ≡ 𝐼1 ≡ 𝐼2 mod 3}. The dimension of the invariants of 𝑆 and 𝑇 is exactly the

number 𝑑(𝑘,3,3)−2

3
+ 1 = 𝑑(𝑘,3,3)+2

3
, where 𝑑(𝑘, 3, 3) is introduced in Section 2.5.1. In conclusion,

the Swan conductor is given by

∞∑
𝑖=1

dimSym𝑘𝑉 − dimSym𝑘𝑉𝐷𝑖

[𝐷0 ∶ 𝐷𝑖]
=
1

4

((
𝑘 + 2

2

)
−
𝑑(𝑘, 3, 3) + 2

3

)
.

□

Proposition 2.33. The invariants of the inertia group are given by

(Sym𝑘𝑉)𝐼∞ = ℚ𝓁(−𝑘)
⨁

𝑝𝑘
⨁

ℒ𝜃(−𝑘)
⨁

𝑝𝑘−𝑝𝑘 ,

where 𝜃 is an unramified character that sends Frobenius to−1, and𝑝𝑘 and𝑝𝑘 are the 𝑘th coefficients
of the generating series 𝑃(𝑥) and 𝑃(𝑥) from (2.30). In particular, the dimension of (Sym𝑘𝑉)𝐼∞ is 𝑝𝑘 .

Proof. Let 𝜙 be a lifting of the image of Frob∞ in GL3 and 𝜙1 =
1

3
𝜙 in SL3. Since 𝜙 normalizes

𝐷0 = 𝐺108, it is in the normalizer of 𝐺108 in SL3, that is, 𝐺216. By direct computation, we find that
𝐺216∕𝐷1 is the quaternion group 𝑄8 and 𝐷0∕𝐷1 is a cyclic group. Notice that 𝜙

−1

1 g𝜙1 = g3 for
g ∈ 𝑄8, which implies that 𝜙1 ∉ 𝐷0. In (2.28) we let 𝑎 = 𝜙1. Then, we obtain

𝑄(𝑥) ∶=

∞∑
𝑠=0

Tr(𝜙1 ∣ (Sym
𝑠𝑉)𝐼∞)𝑥𝑠 =

1

108

∑
g∈𝜙1𝐷0

−1

𝑃g ,𝑉(𝑥)
.

As 𝜙1 ∉ 𝐺108 and 𝐺216 = 𝐺108 ∪ 𝜙1𝐺108, the series 𝑄(𝑥) is nothing but

2𝑃(𝑥) − 𝑃(𝑥) =
−1 + 𝑥3 − 𝑥6

(−1 + 𝑥3)(1 + 𝑥6)
.
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Let 𝑝𝑘 and 𝑝𝑘 be the 𝑘th coefficient of 𝑃(𝑥) and 𝑃(𝑥), respectively.
Notice that 𝜙2

1
∈ 𝐺108, because [𝐺216 ∶ 𝐺108] = 2. Thus, the eigenvalues of 𝜙1 acting on

(Sym𝑘𝑉)𝐼∞ are ±1. Assume that the dimensions of eigenspaces of 1 and −1 are 𝜆1 and 𝜆−1,
respectively. Then, 𝜆1 + 𝜆−1 = dim(Sym𝑘𝑉)𝐼∞ and 𝜆1 − 𝜆−1 = 2𝑝𝑘 − 𝑝𝑘. Therefore, we deduce
the desired decomposition in Proposition 2.33. □

Corollary 2.34. When 𝑝 = 3, the dimensions of the moments are given by

dimH1
�́�𝑡,mid

(𝔾𝑚,𝔽𝑝
, Sym𝑘Kl3) =

⎧⎪⎨⎪⎩
1

3

(𝑘+2
2

)
− ⌊ 𝑘+2

2
⌋ 3 ∤ 𝑘;

1

4

((𝑘+1
2

)
− 𝑑(𝑘,3,3)+2

3

)
− ⌊ 𝑘+2

2
⌋ − 𝑝𝑘 3 ∣ 𝑘.

3 MOTIVES ATTACHED TO KLOOSTERMANMOMENTS

In this section, we aim to construct motives attached to moments of Kloosterman sheaves. Our
approach generalizes the construction presented in [16] by theWeyl construction. Next, we inves-
tigate their de Rham realizations, 𝓁-adic realizations, and other realizations in characteristic
𝑝 > 0.

3.1 The construction of motives

Let 𝑛 be an integer, 𝑉𝜆 the irreducible representation of the highest weight
∑

𝑖 𝜆𝑖(𝐿1 +⋯ + 𝐿𝑖),
and ⊂ 𝔾

𝑛|𝜆|
𝑚 the hypersurface defined by the equation

|𝜆|∑
𝑖=1

( 𝑛∑
𝑗=1

𝑥𝑖,𝑗 +
1∏𝑛

𝑗=1 𝑥𝑖,𝑗

)
= 0. (3.1)

The group 𝑆|𝜆| × 𝜇𝑛+1 acts on  by (𝜎 × 𝜇) ⋅ 𝑥𝑖,𝑗 ∶= 𝜇 ⋅ 𝑥𝜎(𝑖),𝑗 . By a slight abuse of notation, we
denote 𝑃𝜆 and 𝑄𝜆 as the groups 𝑃𝜇(𝜆) and 𝑄𝜇(𝜆) from Section 2.1, and put 𝐺𝜆 = 𝑃𝜆 × 𝑄𝜆. Let
𝜒𝑛 ∶ sign𝑛 × sign𝑛+1 be the character of 𝐺𝜆 and for each representation 𝑉 of 𝑆|𝜆|, we denote the
isotypic component with respect to

1

#𝐺𝜆

∑
𝜎∈𝑃𝜆

sign(𝜎)𝑛𝜎 ⋅
∑
𝜏∈𝑄𝜆

sign(𝜏)𝑛+1𝜏 (3.2)

by 𝑉𝐺𝜆,𝜒𝑛 . Moreover, if a finite group 𝐻 acts on 𝑉 and commutes with 𝑆|𝜆|, then we denote the
isotypic component (𝑉𝐺𝜆,𝜒𝑛 )𝐻 as 𝑉𝐺𝜆×𝐻,𝜒𝑛 .

Definition 3.3. The motives attached to moments of Kl𝜆𝑛+1 are the Nori motives over ℚ with
rational coefficients, of the form

M𝜆
𝑛+1 ∶= gr𝑊

𝑛|𝜆|+1H𝑛|𝜆|−1
𝑐 ()𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1),

where 𝑊∙ is the (motivic) weight filtration [21, Thm. 10.2.5], and the exponent (𝐺𝜆 × 𝜇𝑛+1, 𝜒𝑛)

means taking the isotypic component with respect to (3.2) and the action of 𝜇𝑛+1 described above.
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Remark 3.4. The action of 𝜁𝑛+1 ∈ 𝜇𝑛+1 on is not an automorphism defined overℚ (only defined
over 𝐾 = ℚ(𝜁𝑛+1)). But taking the invariants of 𝜇𝑛+1 on N ∶= gr𝑊

𝑛|𝜆|+1H𝑛|𝜆|−1
𝑐 ()𝐺𝜆,𝜒𝑛 (−1) still

gives rise to a Nori motive over ℚ. In fact, one can see the Nori motive N as a ℚ-vector space
together with an action of the motivic Galois group 𝐺mot(ℚ). We restrict N to a Nori motive N𝐾

over𝐾, that is, aℚ-vector space with an action of the motivic Galois group𝐺mot(𝐾). Then one can
consider a Nori motive over 𝐾

N𝜇𝑛+1 ∶= im(N𝐾

𝜑
G→ N𝐾),

where 𝜑 = 1

#𝜇𝑛+1

∑
𝜁∈𝜇𝑛+1

𝜁. One can check that N𝜇𝑛+1 is stable under the action of Gal(𝐾∕ℚ). By
[21, Thm. 9.1.16], the motive N𝜇𝑛+1 comes from a Nori motive over ℚ.

When the representation 𝑉𝜆 is the 𝑘th symmetric power of the standard representation of
SL𝑛+1, that is, 𝑉(𝑘,0,…,0), we recover the motiveM𝑘

𝑛+1
constructed in [16, (3.1)]. For simplicity, we

useM𝑘
𝑛+1

instead ofM(𝑘,0,…,0)
𝑛+1

in this situation.

Proposition 3.5. The motivesM𝜆
𝑛+1

are pure of weight 𝑛|𝜆| + 1. Moreover, they are equipped with
(−1)𝑛|𝜆|+1-symmetric perfect pairings

M𝜆
𝑛+1 × M𝜆

𝑛+1 → ℚ(−𝑛|𝜆| − 1).

Proof. The motives gr𝑊
𝑛|𝜆|+1(H𝑛|𝜆|−1

𝑐 ()(−1)) are pure of weight 𝑛|𝜆| + 1 by construction. Addi-
tionally, they are equipped with (−1)𝑛|𝜆|+1-symmetric perfect pairings, using a similar proof
[16, Thm. 3.2] for exponential mixed Hodge structures. Taking into account the isotypic
components, the motives M𝜆

𝑛+1
are also pure of weight 𝑛|𝜆| + 1, and possess the induced

(−1)𝑛|𝜆|+1-symmetric pairings. □

3.2 Realizations in characteristic 0

3.2.1 The de Rham realizations

The de Rham realizations ofM𝜆
𝑛+1

underlies a pureHodge structure of weight 𝑛𝑘 + 1.When 𝑛 = 1

and 𝜆 = (𝑘), the Hodge numbers of M𝑘
2
are computed in [16, Thm. 1.8], which are either 0 or 1.

In [32, Thm. 1.2 & Thm. 5.23], we computed the Hodge numbers for more motives and expressed
them using generating series. By a direct computation on generating series in [32], we deduce the
following corollary.

Corollary 3.6. For pairs (𝑛 + 1, 𝑘) listed in the table in Theorem 1.6, the Hodge numbers ofM𝑘
𝑛+1,dR

are either 0 or 1.

ForM4
4,dR

andM(2,2)
3,dR

, althoughwe cannot compute theirHodge numbers directly, they still have
Hodge numbers either 0 or 1, see Remark 5.10 and Remark 5.17.
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3.2.2 The 𝓁-adic realizations

For a prime 𝓁, the 𝓁-adic realization(
M𝜆

𝑛+1

)
𝓁 ∶= gr𝑊

𝑛|𝜆|+1H𝑛|𝜆|−1
�́�𝑡,𝑐

(
ℚ
,ℚ𝓁)

𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1) (3.7)

of M𝜆
𝑛+1

is a continuous 𝓁-adic representation of the absolute Galois group Gal(ℚ∕ℚ), which is
pure of weight 𝑛|𝜆| + 1 and is equipped with a (−1)𝑛|𝜆|+1-symmetric pairing by Proposition 3.5.
Similar to the situation for motives, we indeed obtain a representation ofGal(ℚ∕ℚ). As explained
in Remark 3.4, although the action of 𝜇𝑛+1 does not commute with Gal(ℚ∕ℚ), the invariants of
𝜇𝑛+1 are stable under the action of Gal(ℚ∕ℚ).
For the case of symmetric power moments of Kloosterman sums, we computed the dimensions

of (M𝑘
𝑛+1

)dR in [32, Cor. 2.19]. By the comparison theorem, we have the following proposition.

Proposition 3.8. The dimension of (M𝑘
𝑛+1

)𝓁 is

1

𝑛 + 1

((
𝑘 + 𝑛

𝑛

)
− 𝑑(𝑘, 𝑛 + 1)

)
−

⌊ 𝑛𝑘
2
⌋∑

𝑢=0

𝑚𝑘(𝑢) −

⎧⎪⎨⎪⎩
𝑎(𝑘, 𝑛 + 1) 2 ∣ 𝑛,

0 2 ∤ 𝑛𝑘,

𝑏(𝑘, 𝑛 + 1) else,

where the numbers 𝑎(𝑘, 𝑛 + 1), 𝑏(𝑘, 𝑛 + 1) and 𝑑(𝑘, 𝑛 + 1) are defined in Section 2.5.1, the numbers
𝑚𝑘(𝑢) are defined in (2.16).

We will study the ramification properties of these Galois representations in Section 4.1.

3.3 Other realizations in characteristic 𝒑 > 𝟎

3.3.1 The 𝓁-adic case

Proposition 3.9. We have†

H𝑖
�́�𝑡,?

(
𝔾𝑚,�̄�𝑝

, Kl𝜆𝑛+1

)
≃ H

𝑛|𝜆|+𝑖
�́�𝑡,?

(
𝔾
𝑛|𝜆|+1
𝑚,�̄�𝑝

,ℒ𝜓𝑝(𝑓|𝜆|)
)𝐺𝜆×𝜇𝑛+1,𝜒𝑛

,

for 𝑖 ∈ {0, 1, 2}.

Proof. We provide the proof for the usual cohomology here, and the properties of the cohomology
with compact support and the middle cohomology can be proved similarly.
Let pr𝑧 be the projection from 𝔾

𝑛|𝜆|
𝑚 × 𝔾𝑚,𝑧 to the last factor 𝔾𝑚,𝑧. The projection pr𝑡 is

defined in a parallel way to pr𝑧. By the isomorphism ([𝑛 + 1]∗ℒ𝜓𝑝(𝑓|𝜆|))𝜇𝑛+1 ≃ ℒ𝜓𝑝(𝑓|𝜆|), we have

†Here, the action of 𝜇𝑛+1 is induced by that on 𝔾𝑚,𝔽𝑝(𝜁𝑛+1)
, and we can understand the 𝜇𝑛+1-invariants similarly as in

Remark 3.4.
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Kl𝜆𝑛+1 ≃ ([𝑛 + 1]∗[𝑛 + 1]∗Kl𝜆𝑛+1)
𝜇𝑛+1 . Then,

H𝑖
�́�𝑡

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
≃ H𝑖

�́�𝑡

(
𝔾𝑚,𝔽𝑝

,
(
[𝑛 + 1]∗[𝑛 + 1]∗Kl𝜆𝑛+1

)𝜇𝑛+1)
≃ H𝑖

�́�𝑡

(
𝔾𝑚,𝔽𝑝

, [𝑛 + 1]∗Kl𝜆𝑛+1

)𝜇𝑛+1
≃ H𝑖

�́�𝑡

(
𝔾𝑚,𝔽𝑝

, [𝑛 + 1]∗
(
Kl

⊗|𝜆|
𝑛+1

)𝐺𝜆,𝜒𝑛)𝜇𝑛+1

≃

(
H
𝑛|𝜆|+𝑖
�́�𝑡,?

(
𝔾
𝑛|𝜆|+1
𝑚,𝔽𝑝

,ℒ𝜓𝑝(𝑓|𝜆|)
)𝐺𝜆,𝜒𝑛

)𝜇𝑛+1

,

where in the last isomorphism, we used the geometric description of Kl𝜆𝑛+1 from
Proposition 2.13. □

Similar to the construction for relevant de Rham cohomologies in [16, (2.12)], we have the
following corollary.

Corollary 3.10. There is a (−1)𝑛|𝜆|+1-symmetric perfect self-pairing onH1
ét,mid

(𝔾𝑚,𝔽𝑝
, Kl𝜆𝑛+1).

Theorem 3.11. Assume that 𝑛|𝜆| ⩾ 3. We have isomorphisms of 𝓁-adic cohomologies

gr𝑊
𝑛|𝜆|+𝑖H𝑖

ét,c

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
≃gr𝑊

𝑛|𝜆|+𝑖H𝑛|𝜆|−2+𝑖
ét,c

(
𝔽𝑝
, ℚ𝓁(𝜁𝑝))

𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1)

for 𝑖 ∈ {0, 1, 2}, and

H1
ét,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
≃gr𝑊

𝑛|𝜆|+1H𝑛|𝜆|−1
ét,c

(
𝔽𝑝
, ℚ𝓁(𝜁𝑝)

)𝐺𝜆×𝜇𝑛+1,𝜒𝑛
(−1)

≃gr𝑊
𝑛|𝜆|+1H𝑛|𝜆|+1

ét,
𝔽p

(
𝔾
𝑛|𝜆|
𝑚,𝔽𝑝

, ℚ𝓁(𝜁𝑝)
)𝐺𝜆×𝜇𝑛+1,𝜒𝑛

,

which is also isomorphic to gr𝑊
𝑛|𝜆|+1H𝑛|𝜆|−1

ét

(
𝔽𝑝
, ℚ𝓁(𝜁𝑝)

)𝐺𝜆×𝜇𝑛+1,𝜒𝑛
(−1) when is smooth.

Proof. By performing a change of variables (𝑡, 𝑥𝑖,𝑗) ↦ (𝑡, 𝑥𝑖,𝑗∕𝑡), for 𝑖 ∈ {0, 1}, we obtain

H
𝑛|𝜆|+𝑖
�́�𝑡,c

(
𝔾
𝑛|𝜆|+1
𝑚,�̄�𝑝

,ℒ𝜓𝑝(𝑓|𝜆|)
)
≃ H

𝑛|𝜆|+𝑖
�́�𝑡,𝑐

(
𝔾
𝑛|𝜆|+1
𝑚,�̄�𝑝

,ℒ𝜓𝑝(𝑡⋅g⊞|𝜆|)
)
.

Then, considering the localization sequence for the triple((
𝔸1 × 𝔾

𝑛|𝜆|
𝑚 , 𝑡 ⋅ g⊞|𝜆|) ,(𝔾𝑛|𝜆|+1

𝑚 , 𝑡 ⋅ g⊞|𝜆|) ,(0 × 𝔾
𝑛|𝜆|
𝑚 , 0

))
,

we have exact sequences

H
𝑛|𝜆|−1+𝑖
�́�𝑡,𝑐

(
𝔾
𝑛|𝜆|
𝑚,𝔽𝑝

, ℚ(𝜁𝑝)
)
→H

𝑛|𝜆|+𝑖
�́�𝑡,𝑐

(
𝔾
𝑛|𝜆|+1
𝑚,𝔽𝑝

,ℒ𝜓𝑝(𝑡⋅g⊞|𝜆|)
)

→H
𝑛|𝜆|+𝑖
�́�𝑡,𝑐

(
𝔸1

𝔽𝑝
× 𝔾

𝑛|𝜆|
𝑚,𝔽𝑝

,ℒ𝜓𝑝(𝑡⋅g⊞|𝜆|)
)
→ H

𝑛|𝜆|+𝑖
�́�𝑡,𝑐

(
𝔾
𝑛|𝜆|
𝑚,𝔽𝑝

, ℚ𝓁(𝜁𝑝)
)
.

(3.12)
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for 𝑖 ∈ {0, 1, 2}. Next, we consider another triple(
(𝔸1 × 𝔾

𝑛|𝜆|
𝑚 , 𝑡 ⋅ g⊞𝑘), (𝔸1 × (𝔾

𝑛|𝜆|
𝑚 ∖), 𝑡 ⋅ g⊞|𝜆|), (𝔸1 ×, 0)). (3.13)

Observe that for any 𝑟 ⩾ 0, we have

H𝑟
�́�𝑡,𝑐

(
𝔸1

𝔽𝑝
× (𝔾𝑛|𝜆|

𝑚
∖)𝔽𝑝 ,ℒ𝜓𝑝(𝑡⋅g⊞|𝜆|)

)
= H𝑟

�́�𝑡,𝑐

(
𝔸1

𝔽𝑝
× (𝔾𝑛|𝜆|

𝑚
∖)𝔽𝑝 ,ℒ𝜓𝑝(𝑡)

)
=

⨁
𝑎+𝑏=𝑟

H𝑎
�́�𝑡,𝑐

(
𝔸1

𝔽𝑝
,ℒ𝜓𝑝

)
⊗H𝑏

�́�𝑡,𝑐

(
(𝔾𝑛|𝜆|

𝑚
∖)𝔽𝑝 , ℚ𝓁(𝜁𝑝)

)
= 0,

where we performed a change of variables in the first identity by (𝑡, 𝑥𝑖,𝑗) ↦ (𝑡 ⋅ (g⊞|𝜆|)−1, 𝑥𝑖,𝑗). So,
by the long exact sequences associated with the triple (3.13), we deduce

H
𝑛|𝜆|+𝑖
�́�𝑡,𝑐

(
𝔸1

𝔽𝑝
× 𝔾

𝑛|𝜆|
𝑚,𝔽𝑝

,ℒ𝜓𝑝(𝑡⋅g⊞|𝜆|)
)
≃ H

𝑛|𝜆|−2+𝑖
�́�𝑡,𝑐

(
𝔽𝑝
, ℚ𝓁(𝜁𝑝)

)
(−1). (3.14)

Now, we combine (3.12) and (3.14) to get exact sequences for 𝑖 ∈ {0, 1, 2}. Then, taking the
isotypic component of these sequences, we conclude

H
𝑛|𝜆|−1+𝑖
�́�𝑡,𝑐

(
𝔾
𝑛|𝜆|
𝑚,𝔽𝑝

,ℚ𝓁(𝜁𝑝)
)
𝐺𝜆×𝜇𝑛+1,𝜒𝑛 → H𝑖

�́�𝑡,𝑐

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
→H

𝑛|𝜆|−2+𝑖
�́�𝑡,𝑐

(
𝔽𝑝
, ℚ𝓁(𝜁𝑝))

𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1) → H
𝑛|𝜆|+𝑖
�́�𝑡,𝑐

(
𝔾
𝑛|𝜆|
𝑚,𝔽𝑝

, ℚ𝓁(𝜁𝑝)
)𝐺𝜆×𝜇𝑛+1,𝜒𝑛

(3.15)

by Proposition 3.9. By taking the graded quotient gr𝑊
𝑛|𝜆|+𝑖 on the sequence (3.15), we obtain by

analyzing the Frobenius weights that

gr𝑊
𝑛|𝜆|+𝑖H𝑖

�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
≃ gr𝑊

𝑛|𝜆|+𝑖H𝑛|𝜆|−2+𝑖
�́�𝑡,𝑐

(
𝔽𝑝
, ℚ𝓁(𝜁𝑝))

𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1).

In particular, by putting 𝑖 = 1, we deduce

H1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆
𝑛+1

)
= gr𝑊

𝑛|𝜆|+1H1
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Kl𝜆
𝑛+1

)
≃ gr𝑊

𝑛|𝜆|−1H𝑛|𝜆|−1
�́�𝑡,𝑐

(𝔽𝑝
, ℚ𝓁(𝜁𝑝))

𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1).

For the usual cohomology, we use similar localization sequences to get

gr𝑊
𝑛|𝜆|+1H1

ét

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
≃ gr𝑊

𝑛|𝜆|+1H𝑛|𝜆|+1
ét,

𝔽p

(
𝔾
𝑛|𝜆|
𝑚,𝔽𝑝

, ℚ𝓁(𝜁𝑝)
)𝐺𝜆×𝜇𝑛+1,𝜒𝑛

,

which is also isomorphic to gr𝑊
𝑛|𝜆|+1H𝑛|𝜆|−1

ét
(

𝔽𝑝
, ℚ𝓁(𝜁𝑝))

𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1) when is smooth. □

From Theorem 3.11, the name of M𝜆
𝑛+1

is justified, because the 𝐿-functions of M𝜆
𝑛+1

coincide
with the 𝐿-functions attached to Kloosterman sheaves Kl𝜆𝑛+1.
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3.3.2 The 𝑝-adic case

Bessel 𝐹-isocrystal
Let ℚ𝑝 be the algebraic closure of ℚ𝑝, and we choose an element 𝜛 such that 𝜛𝑝−1 = −𝑝.
This gives rise to a unique nontrivial additive character 𝜓∶ 𝔽𝑝 → ℚ

×

𝑝 , satisfying 𝜓(1) ≡ 1 + 𝜛

mod 𝜛2. The Dwork’s 𝐹-isocrystalℒ𝜛 is a rank 1 connection d +𝜛d𝑧 with Frobenius structure
exp(𝜛(𝑧𝑝 − 𝑧)) on the overconvergent structure sheaf of 𝔸1 over 𝐾 = ℚ𝑝(𝜛). We denoteℒ𝜛ℎ as
the inverse image ofℒ𝜛 along a regular function ℎ∶ 𝑋 → 𝔸1.
The Kloosterman crystal is an overconvergent 𝐹-isocrystal also defined using the diagram (2.7)

by

Kl𝑛+1 ∶= R𝜋rig∗ℒ𝜛𝜎[𝑛].

Similar to the Kloosterman sheaves for reductive groups, there are Bessel 𝐹-crystals for reductive
groups from [40]. The connection associatedwith𝐺 = SL𝑛+1 and𝑉 = 𝑉𝜆 is (Kl

⊗|𝜆|
𝑛+1

)𝐺𝜆,1×sign( 𝑛|𝜆|
2
).

By abuse of notation, we denote by Kl𝜆𝑛+1 the 𝐹-isocrystal (Kl
⊗𝑘
𝑛+1

)𝐺𝜆,1×sign.

Rigid cohomologies
Similar to the 𝓁-adic case, we have for ? ∈ {∅, c,mid}

H1
rig,?

(
𝔾𝑚∕𝐾,Kl

𝜆
𝑛+1

)
= H

𝑛|𝜆|+1
rig,?

(
𝔾
𝑛|𝜆|+1
𝑚 ,ℒ𝜛𝑓|𝜆|

)𝐺𝜆×𝜇𝑛+1,𝜒𝑛
[𝜛].

Using the argument in [16, §3.2.2] by changing the isotypic component from (𝑆𝑘 × 𝜇𝑛+1, 𝜒𝑛) to
(𝐺𝜆 × 𝜇𝑛+1, 𝜒𝑛), we obtain

H1
rig,mid

(
𝔾𝑚∕𝐾,Kl

𝜆
𝑛+1

)
≃ gr𝑊

𝑛|𝜆|+1H𝑛|𝜆|−1
rig,c

(∕𝐾)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1)[𝜛], (3.16)

which is also isomorphic to gr𝑊
𝑛|𝜆|+1H𝑛|𝜆|−1

rig
(∕𝐾)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1)[𝜛] when is smooth.

4 𝑳-FUNCTIONS OF KLOOSTERMAN SHEAVES

In this section, the main goal is to prove Theorem 1.6. First, we study the Galois representations
(M𝜆

𝑛+1
)𝓁 to provide the necessary properties needed in proving Theorems 1.6 and 1.7. The gen-

eral case is covered in Theorem 4.5, while a more detailed analysis of the case of Sym𝑘Kl𝑛+1 is
provided in Theorem 4.15. We also review essential properties of Deligne–Weil representations in
Section 4.2. Lastly, Theorem 1.6 is proven in Section 4.3.
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4.1 Galois representations attached to Kloosterman sheaves

4.1.1 A compactification

Let 𝑘 be an integer and 𝑝 a prime number, not dividing 𝑛 + 1. The Laurent polynomial
g⊞𝑘
𝑛+1

=
∑𝑘

𝑖=1(
∑𝑛

𝑗=1 𝑦𝑖,𝑗 +
1∏
𝑗 𝑦𝑖,𝑗

) on the torus 𝔾𝑛𝑘
𝑚,ℚ

defines a hypersurface . We select a toric
compactification 𝑋tor of 𝔾𝑛𝑘

𝑚 following the approach in [16, §4.3.2], see also [32, §5.2.3]
We start with the pair

(
𝔾𝑛𝑘
𝑚,ℚ

, g⊞𝑘
𝑛+1

)
. Let 𝑀 =

⨁
𝑖,𝑗 ℤ𝑦𝑖,𝑗 be the lattice of monomials on 𝔾𝑛𝑘

𝑚,ℚ

and 𝑁 =
⨁

𝑖,𝑗 ℤ𝑒𝑖,𝑗 the dual lattice. We consider the toric compactification 𝑋 of 𝔾𝑛𝑘
𝑚,ℚ

attached to
the simplicial fan 𝐹 in 𝑁ℝ generated by the rays

ℝ⩾0 ⋅
∑

𝑖,𝑗 𝜖𝑖,𝑗𝑒𝑖,𝑗,

where 𝜖𝑖,𝑗 ∈ {0, ±1} and (𝜖𝑖,𝑗)𝑖,𝑗 ≠ 0. Each simplicial cone of maximal dimension 𝑛𝑘 in 𝐹 provides
an affine chart of 𝑋, which is isomorphic to 𝔸𝑛𝑘. On each chart, the function g⊞𝑘

𝑛+1
has the same

structure. For example, we can consider the maximal cone generated by

𝛾𝑖0,𝑗0 ∶=
∑

1⩽𝑖⩽𝑖0−1,1⩽𝑗⩽𝑛

𝑒𝑖,𝑗 +
∑

1⩽𝑗⩽𝑗0

𝑒𝑖0,𝑗

for 1 ⩽ 𝑖0 ⩽ 𝑘 and 1 ⩽ 𝑗0 ⩽ 𝑛, where the affine ring associatedwith the dual cone is the polynomial
ring ℚ[𝑢𝑖,𝑗] such that

𝑢𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑦𝑖,𝑗∕𝑦𝑖,𝑗+1 1 ⩽ 𝑗 < 𝑛,

𝑦𝑖,𝑗∕𝑦𝑖+1,1 𝑖 < 𝑘, 𝑗 = 𝑛,

𝑦𝑘,𝑛 𝑖 = 𝑘, 𝑗 = 𝑛.

In this chart, we can rewrite g⊞𝑘
𝑛+1

as g1∕
(∏

1⩽𝑗⩽𝑛 𝑢
𝑗

1,𝑗
⋅
∏

2⩽𝑖⩽𝑘,𝑗 𝑢
𝑛
𝑖,𝑗

)
, where

g1 = 1 +

𝑘−1∑
𝑒=1

𝑛∏
𝑗=1

𝑢
𝑗

1,𝑗
⋅
∏
2⩽𝑖⩽𝑒
1⩽𝑗⩽𝑛

𝑢𝑛
𝑖,𝑗

⋅
𝑛∏
𝑗=1

𝑢
𝑛−𝑗

𝑒+1,𝑗
+

∏
1⩽𝑗⩽𝑛

𝑢
𝑗

1,𝑗
⋅
∏
2⩽𝑖⩽𝑘
1⩽𝑗⩽𝑛

𝑢𝑛
𝑖,𝑗

⋅ ℎ

for a polynomial ℎ. The toric variety 𝑋 provides a compactification of (𝔾𝑛𝑘
𝑚 , g⊞𝑘

𝑛+1
), where the

closure of the zero locus of g⊞𝑘
𝑛+1

, and 𝑋∖𝔾𝑛𝑘
𝑚 form a strict normal crossing divisor.

We take the Zariski closure of the hypersurface 𝑍(g⊞𝑘
𝑛+1

) inside 𝑋, denoted by. One can check
that

𝑍(g1) ∩ 𝑍(𝑢1,𝑠) = ∅, 𝑍(g1) ∩ 𝑍(𝑢𝑟,𝑠) = 𝑍

⎛⎜⎜⎜⎝1 +
𝑟−1∑
𝑒=1

𝑛∏
𝑗=1

𝑢
𝑗

1,𝑗
⋅
∏
2⩽𝑖⩽𝑒
1⩽𝑗⩽𝑛

𝑢𝑛
𝑖,𝑗

⋅
𝑛∏
𝑗=1

𝑢
𝑛−𝑗

𝑒+1,𝑗

⎞⎟⎟⎟⎠
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and

𝑍(𝜕g1∕𝜕𝑢1,1) ∩ 𝑍(𝑢𝑟,𝑠) = 𝑍

⎛⎜⎜⎜⎝
𝑟−1∑
𝑒=1

𝑛∏
𝑗=1

𝑢
𝑗

1,𝑗
⋅
∏
2⩽𝑖⩽𝑒
1⩽𝑗⩽𝑛

𝑢𝑛
𝑖,𝑗

⋅
𝑛∏
𝑗=1

𝑢
𝑛−𝑗

𝑒+1,𝑗
∕𝑢1,1

⎞⎟⎟⎟⎠
for 1 ⩽ 𝑠 ⩽ 𝑛 and 2 ⩽ 𝑟 ⩽ 𝑘. It follows that for 1 ⩽ 𝑠 ⩽ 𝑛 and 1 ⩽ 𝑟 ⩽ 𝑘, we have
𝑍(g1) ∩ 𝑍(𝜕g1∕𝜕𝑢1,1) ∩ 𝑍(𝑢𝑟,𝑠) = ∅. We deduce that  is smooth along the divisor
𝑍
(∏

1⩽𝑖⩽𝑘,1⩽𝑗⩽𝑛 𝑢𝑖,𝑗
)
. Moreover, one can check that 𝑍

(∏
1⩽𝑖⩽𝑘,1⩽𝑗⩽𝑛 𝑢𝑖,𝑗

)
∩ satisfies the

strict normal crossing property.
As for  =  ∩ 𝔾𝑛𝑘

𝑚 , one can check that  is smooth if gcd(𝑘, 𝑛 + 1) = 1 and has isolated sin-
gularities inside 𝔾𝑛𝑘

𝑚 if gcd(𝑛 + 1, 𝑘) > 1. In the latter case, the singular locus Σ0 of  has only
finitely many ℚ-points or 𝔽𝑝-points, all of which are ordinary quadratic. We perform blow-ups of
𝔾𝑛𝑘
𝑚 along the singular locus Σ0(ℚ) and denote by ′ the strict transform of . For convenience,

we denote′ as in the case gcd(𝑘, 𝑛 + 1) = 1. We denote by′
the closure of′ in BlΣ0(𝑋).

Lemma 4.1. Let 𝔽 be either ℚ or 𝔽𝑝 . Suppose that gcd(𝑘, 𝑛 + 1) > 1, 𝑛𝑘 is even, and 𝑛𝑘 ⩾ 4. If
𝔽 = 𝔽𝑝, we additionally assume 𝑝 ∤ 𝑛 + 1. Then, we have

H𝑛𝑘−1
�́�𝑡,𝑐

(′
𝔽
) = H𝑛𝑘−1

�́�𝑡,𝑐
(𝔽).

Proof. Let𝑇 be the preimage ofΣ0 along the blow-upmorphism′
→ , which is a disjoint union

of quadrics. Then consider the commutative diagram of exact sequences

(4.2)

Under the assumption that 𝑛𝑘 ⩾ 4, the cohomology H𝑛𝑘−2
�́�𝑡

((Σ0)𝔽) and H𝑛𝑘−1
�́�𝑡

((Σ0)𝔽) both vanish.
In particular, we find that 𝛾 is surjective if we extend the diagram by onemore column to the right.
As 𝑛𝑘 is even, the cohomology H𝑛𝑘−1

�́�𝑡
(𝑇𝔽) = 0, because 𝑇 is disjoint union of quadrics. From

this, we conclude that H𝑛𝑘−1
�́�𝑡,𝑐

(′
𝔽
) = H𝑛𝑘−1

�́�𝑡,𝑐
(𝔽). □

4.1.2 The 𝓁-adic case in general

Let 𝑝 ≠ 𝓁 be two different primes, 𝜆 ∈ ℕ𝑛 be a sequence, and 𝜁𝑛+1 be either an (𝑛 + 1)th primitive
root of unity in 𝔽𝑝 orℚ.We adopt the notation from the previous section and replace 𝑘with |𝜆|.We
denote by Σ′(𝑝) = Σ′(|𝜆|, 𝑛 + 1, 𝑝) the singular set of′

𝔽𝑝
. Recall that each singular point 𝑥 of′

𝔽𝑝

is of the form 𝑥 = (𝑥𝑖,𝑗)1⩽𝑖⩽𝑘, 1⩽𝑗⩽𝑛 = (𝜁
𝑎𝑖
𝑛+1

)𝑖,𝑗 for some 𝑎𝑖 ∈ {0, 1, … , 𝑛}. The action of 𝑆|𝜆| × 𝜇𝑛+1
on Σ′(𝑝) is given by

(𝜎, 𝜁𝑎𝑛+1) ⋅ (𝑥𝑖,𝑗) = (𝜁𝑎𝑛+1 ⋅ 𝑥𝜎(𝑖),𝑗).
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One can identify the 𝑆|𝜆|-orbits in Σ′(𝑝) with the set of multi-indices
{𝐼 ∈ ℕ𝑛+1 ∣ |𝐼| = |𝜆|, 𝐶𝐼 = 0 in 𝔽𝑝, 𝐶𝐼 ≠ 0 in ℂ} = 𝑑(𝑘, 𝑛 + 1, 𝑝) − 𝑑(𝑘, 𝑛 + 1) (4.3)

by sending 𝑥 = (𝜁
𝑎𝑖
𝑛+1

)𝑖,𝑗 to 𝐼 such that 𝐼𝑗 = #{𝑖 ∣ 𝑎𝑖 = 𝑗}. On multi-indices, the actions of 𝜇𝑛+1 is
given by 𝜁𝑛+1 ⋅ (𝐼0, 𝐼1, … , 𝐼𝑛) = (𝐼𝑛, 𝐼0, … , 𝐼𝑛−1).
Assume that 𝑝 ∤ 𝑛 + 1. The singular points in Σ′(𝑝) are ordinary quadratic in the sense of

[1, XII 1.1]. Let 𝑛|𝜆| = 2𝑚 + 1 (resp. 𝑛|𝜆| = 2𝑚 + 2) and we apply the Picard–Lefschetz for-
mula [1, XV 3.4] to ′

ℤ𝑝
→ Spec(ℤ𝑝). For each 𝑥 ∈ Σ′(𝑝), there is a vanishing cycle class

𝛿𝑥 ∈ H
𝑛|𝜆|−1
�́�𝑡

(′

ℚ𝑝

)
(𝑚), well defined up to a sign. These vanishing cycle classes are orthogonal

to each other and satisfy

(𝛿𝑥, 𝛿𝑥) = (−1)𝑚2 (resp. (𝛿𝑥, 𝛿𝑥) = 0).

We fix a place of ℚ over 𝑝 and denote by 𝐼𝑝 the corresponding inertia group. To each element
𝜎 ∈ 𝐼𝑝, the action on H

𝑛|𝜆|−1
�́�𝑡

(′

ℚ
) is given by

𝜎(𝑣) =

{
𝑣 + (−1)𝑚

∑
𝑥∈Σ′(𝑝)

𝜖(𝜎)−1

2
(𝑣, 𝛿𝑥)𝛿𝑥 2 ∤ 𝑛|𝜆|,

𝑣 − (−1)𝑚
∑

𝑥∈Σ′(𝑝) 𝜖(𝜎)(𝑣, 𝛿𝑥)𝛿𝑥 2 ∣ 𝑛|𝜆|, (4.4)

where 𝜖 is the character 𝐼𝑝 ↠ {±1} of order 2 if 𝑛|𝜆| odd, and is the fundamental tame character
𝐼𝑝 → lim

←GG𝑛
𝜇𝓁𝑛 (ℚ𝓁) if 𝑛|𝜆| is even. Moreover, we have an exact sequence

0 → H
𝑛|𝜆|−1
�́�𝑡

(′

𝔽𝑝

)
→ H

𝑛|𝜆|−1
�́�𝑡

(′

ℚ

) 𝛾
G→

∑
𝑥∈Σ′(𝑝)

ℚ𝓁(𝑚 − 𝑛|𝜆| + 1),

where 𝛾 is the sum of the intersections with the vanishing cycle classes 𝛿𝑥.

Theorem 4.5. Suppose that gcd(𝑛 + 1, |𝜆|) = 1 when 𝑛|𝜆| is odd.
(1) If 𝑝 ∤ 𝑛 + 1 and ′

𝔽𝑝
is smooth, the Galois representation (M𝜆

𝑛+1
)𝓁 is unramified at primes 𝑝,

and there is an isomorphism of Gal(ℚ𝑝∕ℚ𝑝)-representations(
M𝜆

𝑛+1

)
𝓁[𝜁𝑝] ≃ H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
.

(2) If 𝑝 ∤ 𝑛 + 1 and 𝑝 ≠ 2, the Galois representation (M𝜆
𝑛+1

)𝓁 is at most tamely ramified.

Proof. For simplicity, we omit the coefficient ℚ𝓁 in the cohomology. Let (0)
= ′

and (𝑖)
the

disjoint union of all 𝑖-fold intersections of distinct irreducible components of′
∖′ for 𝑖 ⩾ 1. Let

𝔽 be either ℚ or 𝔽𝑝. Consider the spectral sequence

(𝐸
𝑝,𝑞
1

)𝔽 = H
𝑞

�́�𝑡

(
(𝑝)

𝔽

)
⇒ H

𝑝+𝑞

�́�𝑡,𝑐

(′
𝔽

)
. (4.6)

For the case 𝔽 = ℚ, since (𝑖)
are proper smooth for all 𝑖, all morphisms in the 𝐸2-page are 0 for

the reason of weights. Therefore, the spectral sequence degenerates at the 𝐸2-page. It follows from
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the spectral sequence that

gr𝑊
𝑛|𝜆|−1H𝑛|𝜆|−1

�́�𝑡,𝑐

(′

ℚ

)
=
(
𝐸0,𝑛|𝜆|−1∞

)
ℚ
= ker

(
H
𝑛|𝜆|−1
�́�𝑡

(′

ℚ

)
→ H

𝑛|𝜆|−1
�́�𝑡

(
(1)

ℚ

))
= im

(
H
𝑛|𝜆|−1
�́�𝑡,𝑐

(′

ℚ

) 𝛼
G→ H

𝑛|𝜆|−1
�́�𝑡

(′

ℚ

))
,

where the map 𝛼 is the surjective edge map from the abutment H𝑛|𝜆|−1
�́�𝑡,𝑐

(′

ℚ
) to 𝐸0,𝑛|𝜆|−1

2
. Notice

that the above spectral sequence is equivariant with respect to the action of 𝑆|𝜆| × 𝜇𝑛+1. Using the
isomorphism in Lemma 4.1, we conclude that

im(𝛼)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 ≃ (M𝜆
𝑛+1)𝓁(1). (4.7)

For the case that 𝔽 = 𝔽𝑝, we conclude similarly 𝐺-equivariant isomorphisms

gr𝑊
𝑛|𝜆|−1H𝑛|𝜆|−1

�́�𝑡,𝑐

(′

ℚ

)
= gr𝑊

′

𝑛|𝜆|−1(𝐸0,𝑛|𝜆|−1∞

)
𝔽𝑝

= gr𝑊
′

𝑛|𝜆|−1im
(
H
𝑛|𝜆|−1
�́�𝑡,𝑐

(
′

𝔽𝑝

)
𝛽
G→ H

𝑛|𝜆|−1
�́�𝑡

(′

𝔽𝑝

))
,

wherewe denote by𝑊′ the (Frobenius)weight filtration to distinguish it from theweight filtration
𝑊 in characteristic 0. Recall that

H1
ét,mid

(
𝔾𝑚,Kl

𝜆
𝑛+1

)
≃ gr𝑊

′

𝑛|𝜆|+1H𝑛|𝜆|−1
ét,c

(
𝔽𝑝
, ℚ𝓁(𝜁)

)𝐺𝜆×𝜇𝑛+1,𝜒𝑛
(−1)

from Theorem 3.11. We obtain

gr𝑊
′

𝑛|𝜆|+1im(𝛽)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1)[𝜁𝑝] ≃ H1
�́�𝑡,mid

(𝔾𝑚,𝔽𝑝
, Kl𝜆𝑛+1). (4.8)

Now we consider the 𝐺-equivariant commutative diagram with exact rows and columns

(4.9)

where the middle row is given by the Picard–Lefschetz formula (we assume 𝑝 ∤ 𝑛 + 1). More-
over, taking into account (4.4), the representation H𝑛|𝜆|−1

�́�𝑡
(′

ℚ
) of Gal(ℚ𝑝∕ℚ𝑝) is at most tamely

ramified when 𝑝 ≠ 2. We verified the second statement in the theorem.
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Notice that each class 𝛿𝑥 is a generator of H
𝑛|𝜆|−1
{𝑥}

(′
, RΨ(𝑚)), with support {𝑥}, where RΨ

denotes the nearby cycle complex. So, Δ =
⨁

ℚ𝓁(−𝑚)𝛿𝑥 is contained in im(𝛼). If we take the
isotypic component with respect to (𝐺𝜆 × 𝜇𝑛+1, 𝜒𝑛) on the second row, we have an exact sequence

0 → H
𝑛|𝜆|−1
�́�𝑡

(′

𝔽𝑝

)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 𝜄
→ H

𝑛|𝜆|−1
�́�𝑡

(′

ℚ

)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 𝛾
→

( ⨁
𝑥∈Σ′(𝑝)

ℚ𝓁(𝑚 − 𝑛|𝜆| + 1)

)𝐺𝜆×𝜇𝑛+1,𝜒𝑛

.

(4.10)
By a diagram-chasing argument, we get from (4.10) an inclusion

gr𝑊
′

𝑛|𝜆|+1im(𝛽)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 ↪ im(𝛼)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 . (4.11)

When ′ has good reduction at 𝑝, the variety ′

𝔽𝑝
is smooth proper and the morphisms 𝜄 and

𝜄𝑐 in (4.9) are isomorphisms. So, im(𝛼) ≃ im(𝛽) are pure of weight 𝑛𝑘 − 1 (𝑊 and𝑊′ coincide).
By (4.7) and (4.8), we get an isomorphism

(M𝜆
𝑛+1)𝓁[𝜁𝑝] ≃ H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1

)
of unramified Gal(ℚ𝑝∕ℚ𝑝)-representations from (4.11). This verifies the first statement in the
theorem. □

Remark 4.12. In the discussion above, we have omitted the case where 𝑝 ∣ 𝑛 + 1. In this
situation, the singular points of

𝔽𝑝
are isolated but not ordinary quadratic, rendering the Picard–

Lefschetz formula inapplicable in this case. Nevertheless, the vanishing cycles with respect to
′

ℤ𝑝
→ Spec(ℤ𝑝) remain 0 if 𝑖 ≠ 𝑛|𝜆| − 1 [23, Cor. 2.10].

If gcd(𝑘, 𝑛 + 1) = 1, then  = ′, and many of the above arguments, including (4.8), remain
valid even when 𝑝 ∣ 𝑛 + 1. Based on the long exact sequence associated with vanishing cycles
[1, XIII (1.4.2.2)], the cospecialization morphism

H
𝑛|𝜆|−1
�́�𝑡

(
𝔽𝑝
) → H

𝑛|𝜆|−1
�́�𝑡

(
ℚ
)

is injective. Hence, the diagram

induces an injective morphism

gr𝑊
′

𝑛|𝜆|+1im(𝛽)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1) ↪ gr𝑊
𝑛|𝜆|+1H𝑛|𝜆|−1

�́�𝑡,𝑐
(

ℚ
)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 (−1) = (M𝜆

𝑛+1)𝓁 . (4.13)

As long as the dimensions of the source and the target of (4.13) are the same, the inclusion becomes
an isomorphism, implying that (M𝜆

𝑛+1
)𝓁 is unramified at 𝑝. For instance, when 𝑛 ⩽ 2, 𝑝 = 𝑛 + 1,

and 𝑝 ∤ 𝑘, the Galois representations attached to Sym𝑘Kl𝑛+1 are unramified according to
[41, Cor. 4.3.5] and Corollary 2.34.
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Let 𝑁(𝑉𝜆) and 𝐸(𝑉𝜆) be endomorphisms of 𝑉𝜆, induced from 𝑁 and 𝐸 in 𝔰𝔩𝑛+1, as defined in
[14, § 5]. Inspired by the above examples, we conjecture that:

Conjecture 4.14. The morphism (4.13) is an isomorphism when the matrices 𝑁(𝑉𝜆) + 𝐸(𝑉𝜆)

is invertible.

4.1.3 The 𝓁-adic case for Sym𝑘Kl𝑛+1

Now we give a description in detail ofM𝜆
𝑛+1,𝓁 for 𝜆 = (𝑘, 0, … , 0), that is, the case for Sym𝑘Kl𝑛+1.

Let𝑎(𝑘, 𝑛 + 1, 𝑝),𝑎(𝑘, 𝑛 + 1), and 𝛿(𝑘, 𝑝) be numbers defined in Section 2.5.1 andProposition 2.22.

Theorem 4.15. Let 𝑝 be a prime different from 𝓁 such that 𝑝 ∤ 𝑛 + 1 and′ has bad reductions at
𝑝. Then,

(1) If 𝑛𝑘 is odd, gcd(𝑘, 𝑛 + 1) = 1, and 𝑝 ≠ 2, the Galois representation (M𝑘
𝑛+1

)𝓁 is tamely ramified
at 𝑝. For such primes, we have orthogonal decompositions (M𝑘

𝑛+1
)𝓁 = H

⨁
E as Gal(ℚ𝑝∕ℚ𝑝)-

representations such that
∙ H[𝜁𝑝] = H1

�́�𝑡,mid
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1),
∙ E is generated by vanishing cycle classes.

(2) If 𝑛 + 1 is a prime number, the Galois representation (M𝑘
𝑛+1

)𝓁 is tamely ramified at 𝑝. For such
primes, the inertia groups 𝐼𝑝 ⊂ Gal(ℚ𝑝∕ℚ𝑝) act unipotently on (M𝑘

𝑛+1
)𝓁 such that (𝜎 − 1)2 = 0

for any 𝜎 ∈ 𝐼𝑝. The image 𝑈 of the nilpotent part of the monodromy operator, denoted as 𝑁, is
generated by vanishing cycle classes and has dimension 𝑎(𝑘, 𝑛 + 1, 𝑝) − 𝑎(𝑘, 𝑛 + 1) − 𝛿(𝑘, 𝑝).
With respect to the intersection pairing, 𝑈 is totally isotropic with orthogonal complement
(M𝑘

𝑛+1
)
𝐼𝑝
𝓁 . Moreover, the induced map 𝜎 − 1∶ (M𝑘

𝑛+1
)𝓁 ↦ (M𝑘

𝑛+1
)𝓁∕𝑈 is zero.

Proof. For simplicity, we replace the exponent (𝑆𝑘 × 𝜇𝑛+1, 𝜒𝑛) by (𝐺, 𝜒). Since the Galois repre-
sentations are trivial or one-dimensional when 𝑛𝑘 ⩽ 3, we assume that 𝑛𝑘 ⩾ 4. When 𝑝 ∤ 𝑛 + 1,
all singularities of

𝔽𝑝
are ordinary quadratic. Consider again the spectral sequence (4.6) and let

𝐹∙ be the induced decreasing filtration on H𝑛𝑘−1
�́�𝑡,c

(′
𝔽
). Since (𝑖)

are smooth proper over both ℚ

and 𝔽𝑝 if 𝑖 ⩾ 1, we have the isomorphisms H𝑎
�́�𝑡
((𝑖)

𝔽𝑝
) ≃ H𝑎

�́�𝑡
((𝑖)

ℚ
) for 𝑖 ⩾ 1 and any 𝑎 ∈ ℤ. By the

Picard–Lefschetz formula, we have isomorphisms H𝑎
�́�𝑡
((𝑖)

𝔽𝑝
) ≃ H𝑎

�́�𝑡
((𝑖)

ℚ
) for 0 ⩽ 𝑎 ⩽ 𝑛𝑘 − 2. So,

(𝐸𝑖,𝑛𝑘−1−𝑖
2

)
ℚ
≃ (𝐸𝑖,𝑛𝑘−𝑖−1

2
)
𝔽𝑝
and

(
𝐸𝑖,𝑛𝑘−𝑖−1
2

)
𝔽𝑝

=
(
𝐸𝑖,𝑛𝑘−𝑖−1∞

)
𝔽𝑝

=
(
𝐸𝑖,𝑛𝑘−1−𝑖∞

)
ℚ

(4.16)

for 𝑖 ⩾ 1. In other words, the dimensions of the graded pieces gr𝑖
𝐹
H𝑛𝑘−1
�́�𝑡,c

(′

𝔽𝑝
) = gr𝑖

𝐹
H𝑛𝑘−1
�́�𝑡,c

(′

ℚ
)

are independent of 𝑝 when 𝑖 ⩾ 1.

Lemma 4.17. The graded quotient gr𝑖
𝐹
H𝑛𝑘−1
�́�𝑡,c

(′

𝔽𝑝
)𝐺,𝜒 is pure of Frobenius weight 𝑛𝑘 − 1 − 𝑖 if

1 ⩽ 𝑖 ⩽ 𝑛𝑘 − 1, and is mixed of weight 𝑛𝑘 − 1 and 𝑛𝑘 − 2 if 𝑖 = 0. Moreover, the dimension of
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gr𝑊
′

𝑛𝑘−2
gr0

𝐹
H𝑛𝑘−1
�́�𝑡,c

(′

𝔽𝑝
)𝐺,𝜒 is

−dimH0
(
𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1

)
+

⎧⎪⎨⎪⎩
𝑎(𝑘, 𝑛 + 1, 𝑝) − 𝑎(𝑘, 𝑛 + 1) 2 ∣ 𝑛,

0 2 ∤ 𝑛𝑘,

𝑏(𝑘, 𝑛 + 1, 𝑝) − 𝑏(𝑘, 𝑛 + 1) 2 ∤ 𝑛 and 2 ∣ 𝑘.

Proof. When 1 ⩽ 𝑖 ⩽ 𝑛𝑘 − 1, the graded quotient gr𝑖
𝐹
H𝑛𝑘−1
�́�𝑡,c

(′

𝔽𝑝
)𝐺,𝜒 = (𝐸𝑖,𝑛𝑘−𝑖−1

2
)𝐺,𝜒 is pure of

Frobenius weight 𝑛𝑘 − 1 − 𝑖, and its dimension is independent of 𝑝. By the exact sequence (3.15),
we deduce for 0 ⩽ 𝑖 that

dim𝐹1+𝑖H𝑛𝑘−1
�́�𝑡,c

(
′

𝔽𝑝

)𝐺,𝜒

⩽ dim𝑊′
𝑛𝑘−2−𝑖

H𝑛𝑘−1
�́�𝑡,c

(
′

𝔽𝑝

)𝐺,𝜒

= dim𝑊′
𝑛𝑘−𝑖

H1
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1

)
.

(4.18)

By the long exact sequence (2.5), the dimensions of the graded pieces of the Frobe-
nius weight 𝑊′ filtration on H1

�́�𝑡,c
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) can be calculated in terms of those of

(Sym𝑘Kl𝑛+1)
𝐼
0

𝜂0
, (Sym𝑘Kl𝑛+1)

𝐼∞
𝜂∞
, and (Sym𝑘Kl𝑛+1)

𝐺geom . According to Theorems 2.15 and 2.18, as

(Sym𝑘Kl𝑛+1)
𝐼∞
𝜂∞

and (Sym𝑘Kl𝑛+1)
𝐺geom are pure of weight 𝑛𝑘, we deduce that

dim𝑊′
𝑛𝑘−𝑖

H1
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1

)
= dim𝑊′

𝑛𝑘−𝑖

(
Sym𝑘Kl𝑛+1

)𝐼
0

𝜂0
,

for 1 ⩽ 𝑖. By Remark 2.14, we deduce that dim𝑊′
𝑛𝑘−1−𝑗

H1
�́�𝑡,c

(𝔾𝑚,𝔽𝑝
, Sym𝑘Kl𝑛+1) is independent of

𝑝 when 𝑗 ⩾ 0.
Now we replace 𝑝 by a prime 𝑝′ at which ′

has a good reduction. In this case
H𝑛𝑘−1
�́�𝑡,c

(′

𝔽𝑝′
) ≃ H𝑛𝑘−1

�́�𝑡,c
(′

ℚ
), and the Frobeniusweight filtration𝑊′ on the left-hand side coincides

with the weight filtration𝑊 on the right-hand side. In particular, we have

gr𝑊
′

𝑛𝑘−1−𝑖
H𝑛𝑘−1
�́�𝑡,c

(
′

𝔽𝑝′

)𝐺,𝜒

= gr𝑖𝐹H
𝑛𝑘−1
�́�𝑡,c

(
′

𝔽𝑝′

)𝐺,𝜒

(4.19)

for all 0 ⩽ 𝑖 ⩽ 𝑛𝑘 − 1. It follows that

dim𝐹1+𝑖H𝑛𝑘−1
�́�𝑡,c

(
′

𝔽𝑝′

)𝐺,𝜒

= dim𝑊′
𝑛𝑘−2−𝑖

H𝑛𝑘−1
�́�𝑡,c

(
′

𝔽𝑝′

)𝐺,𝜒

= dim𝑊′
𝑛𝑘−𝑖

H1
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝′

, Sym𝑘Kl𝑛+1

) (4.20)

for 0 ⩽ 𝑖. Hence, we conclude that (4.18) is an equality. In particular, each gr𝑖
𝐹
H𝑛𝑘−1
�́�𝑡,c

(′

𝔽𝑝
)𝐺,𝜒

is pure of Frobenius weight 𝑛𝑘 − 1 − 𝑖 if 1 ⩽ 𝑖 ⩽ 𝑛𝑘 − 1, and gr0
𝐹
H𝑛𝑘−1
�́�𝑡,c

(′

𝔽𝑝
)𝐺,𝜒 is mixed of

Frobenius weight 𝑛𝑘 − 1 and 𝑛𝑘 − 2.
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At last, using (4.20), we have

dimgr𝑊
′

𝑛𝑘−2
gr0𝐹H

𝑛𝑘−1
�́�𝑡,c

(
′

𝔽𝑝

)𝐺,𝜒

= dimgr𝑊
′

𝑛𝑘−2
H𝑛𝑘−1
�́�𝑡,c

(
′

𝔽𝑝

)𝐺,𝜒

− dimgr𝑊
′

𝑛𝑘−2
𝐹1H𝑛𝑘−1

�́�𝑡,c

(
′

𝔽𝑝

)𝐺,𝜒

= dimgr𝑊
′

𝑛𝑘
H1
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1

)
− dimgr𝑊

′

𝑛𝑘
H1
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝′

, Sym𝑘Kl𝑛+1

)
.

By (2.5), Theorem 2.15 and Theorem 2.18, the above dimension coincides with the claimed
number. □

(1) Assume that 𝑛𝑘 is odd and 𝑝 ∤ 2(𝑛 + 1). By (4.10), the representation (M𝜆
𝑛+1

)𝓁 is tamely
ramified.† By (4.4), the short exact sequence

splits, and H𝑛𝑘−1
�́�𝑡

(′

𝔽𝑝
) is orthogonal to Δ =

⨁
𝑥 ℚ𝓁(−𝑚)𝛿𝑥 in H𝑛𝑘−1

�́�𝑡
(′

ℚ
). By taking the

(𝐺, 𝜒)-isotypic component and by doing diagram-chasing argument in diagram (4.9), we
deduce

im(𝛼)𝐺,𝜒 = im(𝛽)𝐺,𝜒
⨁

Δ𝐺,𝜒.

Since 𝑛𝑘 is odd, the global monodromy group of Kl𝑛+1 is SP𝑛+1, which implies that
H0(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) = 0. By Lemma 4.17, we have dimgr𝑊
′

𝑛𝑘−2
gr0

𝐹
H𝑛𝑘−1
�́�𝑡,c

(′

𝔽𝑝
)𝐺,𝜒 = 0.

Hence, im(𝛽)𝐺,𝜒 is pure of weight 𝑛𝑘 − 1 and gr𝑊′

𝑛|𝜆|−1im(𝛽)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 = im(𝛽)𝐺𝜆×𝜇𝑛+1,𝜒𝑛 . By
(4.8), we can take H = im(𝛽)𝐺,𝜒 and E = Δ𝐺,𝜒 .

(2) Assume that 𝑛 + 1 is a prime number. Recall that 𝑛𝑘 = 2𝑚 + 2 and Δ =
∑

𝑥∈Σ′(𝑝) ℚ𝓁(−𝑚)𝛿𝑥

is the subspace of H𝑛𝑘−1
�́�𝑡

(′

ℚ
) generated by vanishing cycle classes. By the Picard–Lefschetz

formula, the action of 𝜎 ∈ 𝐼𝑝 acting on a cohomology class 𝑣 ∈ H𝑛𝑘−1
�́�𝑡

(𝐾
ℚ
) is given by

𝜎(𝑣) = 𝑣 − (−1)𝑚+1𝑡𝓁(𝜎)
∑

𝑥∈Σ′(𝑝)

< 𝑣, 𝛿𝑥 > 𝛿𝑥,

which implies that (𝜎 − 1)2 = 0. It follows that

(
M𝑘

𝑛+1

)𝐼𝑝
𝓁 =

(
Δ⟂

)𝐺,𝜒
= im(𝛼)𝐺,𝜒 ∩ H𝑛𝑘−1

�́�𝑡

(′

𝔽𝑝

)
⊃ im(𝛽)𝐺,𝜒,

and the induced map 𝜎 − 1∶ (M𝑘
𝑛+1

)𝓁 ↦ (M𝑘
𝑛+1

)𝓁∕Δ
𝐺,𝜒 is zero. It suffices to calculate the

dimension of 𝑈 = Δ𝐺,𝜒 .

† (M𝜆
𝑛+1

)𝓁 is possibly wildly ramified at 𝑝 = 2 is because the character 𝜖∶ 𝐼2 → {±1} has order 2.

 1460244x, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70003, W

iley O
nline L

ibrary on [05/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fplms.70003&mode=


40 of 60 QIN

Consider the diagram

(4.21)

where 𝐶 is the image of the map 𝛾 inside (⊕𝑥∈Σ′ ( 𝑝)ℚ𝓁( −𝑚 − 1))𝐺,𝜒 .

Lemma 4.22. In the diagram (4.21), the vertical map 𝑖1 is an isomorphism. If 𝑝 = 2 and 𝑘 is even,
the cokernel of the vertical map 𝑖2 is one-dimensional. Otherwise, the map 𝑖2 is an isomorphism.

Proof. By a diagram-chasing argument in (4.9), we conclude that im(𝛽) = im(𝛼) ∩ H𝑛𝑘−1
�́�𝑡

(′

𝔽𝑝
).

So, the map 𝑖1 is an isomorphism.
Consider the subsequent part of the diagram (4.9), that is,

where the two vertical maps are the surjective edge map from the abutmentH𝑛𝑘
�́�𝑡,c

(′) to 𝐸0,𝑛𝑘. By
the same argument for the cohomology of degree 𝑛𝑘 − 1, we have im(𝛼′) = gr𝑊

𝑛𝑘
H𝑛𝑘
�́�𝑡,c

(′

ℚ
), and

by (3.15) an exact sequence

ℚ𝓁(𝜁𝑝)(−1)
𝐺,𝜒 → H2

�́�𝑡,c
(𝔾𝑚, Sym

𝑘Kl𝑛+1) → H𝑛𝑘
�́�𝑡,c

(
𝔽𝑝
)𝐺,𝜒(−1)[𝜁𝑝] → ℚ𝓁(𝜁𝑝)(−2)

𝐺,𝜒. (4.23)

Assume that ′
has good reduction at 𝑝′. Consider the above diagram for 𝑝′, then

im(𝛽′) = im(𝛼′). Since H2
�́�𝑡,c

(𝔾𝑚,𝔽𝑝′
, Sym𝑘Kl𝑛+1) = 0 and im(𝛽′) is pure of Frobenius weight 𝑛𝑘,

we have im(𝛽′)𝐺,𝜒 = 0 by (4.23). This forces im(𝛼′)𝐺,𝜒 = 0, which does not depend on the choice
of 𝑝.
If 𝑝 ≠ 2 or 𝑘 is odd, we have dimH2

�́�𝑡,𝑐
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) = dimH0
�́�𝑡
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) = 0.

So, (4.23) implies that im(𝛽′) = 0. Hence, 𝜅 = 0, 𝐶 = (⊕𝑥∈Σ′ ( 𝑝)ℚ𝓁( −𝑚 − 1))𝐺,𝜒 , and the two
vertical maps 𝑖1 and 𝑖2 are isomorphisms.
If 𝑝 = 2 and 𝑘 is even, the monodromy group of Kl𝑛+1 is either SO𝑛+1 or 𝐺2. So,

(Sym𝑘Kl𝑛+1)
𝐺geom is one-dimensional and we have

dimH2
�́�𝑡,𝑐

(𝔾𝑚,𝔽𝑝
, Sym𝑘Kl𝑛+1) = dimH0

�́�𝑡
(𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1) = 1.

By the property of the spectral sequence (4.6) and (4.23), we have

gr𝑊
𝑛𝑘+2

H2
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1

)
≃ gr𝑊

𝑛𝑘+2
H𝑛𝑘
�́�𝑡,c

(
′

𝔽𝑝

)𝐺,𝜒

(−1) = im(𝛽′)𝐺,𝜒(−1).
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So, im(𝛽′)𝐺,𝜒 is one-dimensional. Since im(𝛼′)𝐺,𝜒 = 0, the morphism 𝜅 is surjective. Therefore,
in (4.21), the cokernel of 𝑖2 has dimension 1. □

Notice that Δ𝐺,𝜒 is contained in im(𝛽)𝐺,𝜒 , because

Δ𝐺,𝜒 ⊂
(
Δ⟂

)𝐺,𝜒
= im(𝛼)𝐺,𝜒 ∩ H𝑛𝑘−1

�́�𝑡
(′

𝔽𝑝
) = im(𝛽)𝐺,𝜒.

Since Δ𝐺,𝜒 is pure of Frobenius weight 𝑛𝑘 − 2, we deduce that Δ𝐺,𝜒 ⊂ 𝑊′
𝑛𝑘−2

im(𝛽). By
Proposition 3.8, the properties of the spectral sequence (4.6), and (4.7), we have

dim im(𝛼)𝐺,𝜒 = dimH𝑛𝑘−1
�́�𝑡,𝑐

(
ℚ
) −

𝑛𝑘−1∑
𝑖=1

dim
(
𝐸𝑖,𝑛𝑘−1−𝑖∞

)𝐺,𝜒
ℚ

=

(𝑘+𝑛
𝑛

)
− 𝑑(𝑘, 𝑛 + 1)

𝑛 + 1
− dim

(
Sym𝑘Kl𝑛+1

)𝐼0
𝜂0
− 𝑎(𝑘, 𝑛 + 1).

As for the dimension of im(𝛽)𝐺,𝜒 , by Proposition 2.22, (4.8), and Lemma 4.17, we deduce that

dim im(𝛽)𝐺,𝜒 = dimgr𝑊
′

𝑛𝑘−1
im(𝛽)𝐺,𝜒 + dimgr𝑊

′

𝑛𝑘−2
im(𝛽)𝐺,𝜒

=

(𝑘+𝑛
𝑛

)
− 𝑑(𝑘, 𝑛 + 1, 𝑝)

𝑛 + 1
− dim

(
Sym𝑘Kl𝑛+1

)𝐼0
𝜂0

− 𝑎(𝑘, 𝑛 + 1) + dimH2
�́�𝑡,c

(
𝔾𝑚,𝔽𝑝

, Sym𝑘Kl𝑛+1

)
.

Notice that we have the identity 𝑑(𝑘, 𝑛 + 1, 𝑝) − 𝑑(𝑘, 𝑛 + 1) = (𝑛 + 1)(𝑎(𝑘, 𝑛 + 1, 𝑝) − 𝑎(𝑘, 𝑛 +

1)). Then, we get from Lemma 4.22 that

dim𝐶
(∗)
= dim im(𝛼)𝐺,𝜒 − dim im(𝛽)𝐺,𝜒

= 𝑎(𝑘, 𝑛 + 1, 𝑝) − 𝑎(𝑘, 𝑛 + 1) − dimH2
�́�𝑡,𝑐

(𝔾𝑚,𝔽𝑝
, Sym𝑘Kl𝑛+1)

= dimgr𝑊
′

𝑛𝑘−2
im(𝛽)𝐺,𝜒 ⩾ dimΔ𝐺,𝜒

= dim im(𝛼)𝐺,𝜒 − dim(Δ⟂)𝐺,𝜒

(∗∗)
= dim im(𝛼)𝐺,𝜒 − dim im(𝛽)𝐺,𝜒 = dim𝐶,

(4.24)

where (∗) is deduced from the short exact sequence (4.21), and (∗∗) is because Δ⟂ = im(𝛽). So,
Δ𝐺,𝜒 = gr𝑊

′

𝑛𝑘−2
im(𝛽)𝐺,𝜒 , and its dimension is

𝑎(𝑘, 𝑛 + 1, 𝑝) − 𝑎(𝑘, 𝑛 + 1) − dimH2
�́�𝑡,𝑐

(𝔾𝑚,𝔽𝑝
, Sym𝑘Kl𝑛+1). □

Remark 4.25. We proved that when 𝑛 + 1 is a prime and 𝑝 ≠ 𝑛 + 1 the representation (M𝑘
𝑛+1

)𝓁
satisfies the weight–monodromy conjecture, where the monodromy filtration is given by

𝑀𝑛𝑘 = Δ𝐺,𝜒(−1) ⊂ 𝑀𝑛𝑘+1 = im(𝛽)𝐺,𝜒(−1) ⊂ 𝑀𝑛𝑘+2 = im(𝛼)𝐺,𝜒(−1).

In other words, the associatedWeil–Deligne representation is pure of weight 𝑛𝑘 + 1 (see [3, p.528]
and Section 4.2 for the definition).
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Corollary 4.26.

(1) If 𝑛 + 1 is a prime, the exponent of the Artin conductor of (M𝑘
𝑛+1

)𝓁 at 𝑝 is 𝑎(𝑘, 𝑛 + 1, 𝑝) −

𝑎(𝑘, 𝑛 + 1) − 1 if 𝑝 = 2 and 𝑘 even, and is 𝑎(𝑘, 𝑛 + 1, 𝑝) − 𝑎(𝑘, 𝑛 + 1) otherwise.
(2) The exponent of the Artin conductor of {

(
M(2,1)

3

)
𝓁}𝓁 at 𝑝 is 1 if 𝑝 = 2, 7, and is 0 if 𝑝 ≠ 2, 3, 7.

(3) The exponent of the Artin conductor of {
(
M

(2,2)
3

)
𝓁}𝓁 at 𝑝 is 1 if 𝑝 = 2, and is 0 if 𝑝 ≠ 2, 3.

Proof. For the first case, the Artin conductor of (M𝑘
𝑛+1

)𝓁 at 𝑝 is dim𝐶 = dim im(𝛼) − dim im(𝛽).
We get the exact formula by Lemma 4.17 and (4.24).
For the second and the third cases, if 𝑝 ≠ 3, we can perform the same argument in the above

theorem for {
(
M

(2,1)
3

)
𝓁}𝓁 and {

(
M

(2,2)
3

)
𝓁}𝓁 , together with the local behaviors of Kl

(2,1)
3

and Kl(2,2)
3

from Propositions 2.17 and 2.19. If 𝑝 = 3, the representation {
(
M(2,1)

3

)
𝓁}𝓁 is unramified by an

analog of Corollary 2.34 and Remark 4.12.

4.1.4 The 𝑝-adic case

We study the 𝑝-adic Galois representations (M𝜆
𝑛+1

)𝑝 in this section.

Proposition 4.27. The 𝑝-adic representation (M𝜆
𝑛+1

)𝑝 is de Rham. If 𝑝 ∤ 𝑛 + 1 and ′
has good

reduction at 𝑝. Then, the representation (M𝜆
𝑛+1

)𝑝 is crystalline and there is an isomorphism of
Frobenius modules

H1
rig,mid

(
𝔾𝑚∕𝐾,Kl

𝜆
𝑛+1

)
≃
((
M𝜆

𝑛+1

)
𝑝
⊗ 𝐁𝑐𝑟𝑦𝑠

)Gal(ℚ𝑝∕ℚ𝑝)
⊗ 𝐾.

Proof. As in Section 4.1.1, we let′ be if gcd(𝑛 + 1, 𝑘) = 1 and the blow-up of along singular
locus otherwise. By [4, §3.3(i) and §3.4], since the 𝑝-adic representation H𝑛𝑘−1

�́�𝑡
(′

ℚ
, ℚ𝑝) comes

from a proper smooth variety, it is de Rham. Then, we conclude the first assertion by the fact that
the subquotient of a de Rham representation remains de Rham.
Now assume that gcd(𝑝, 𝑛 + 1) = 1 and ′ has good reduction at 𝑝. Then, by the 𝑝-adic com-

parison theorem, the representation H𝑛𝑘−1
�́�𝑡

(′

ℚ𝑝
) is crystalline. Therefore, as a subquotient of

H𝑛𝑘−1
�́�𝑡

(′

ℚ𝑝
), the representation (M𝜆

𝑛+1
)𝑝 remains crystalline.

Recall that we have an isomorphism

H1
rig,mid

(
𝔾𝑚∕𝐾,Kl

𝜆
𝑛+1

)
≃ gr𝑊

𝑛|𝜆|−1H𝑛|𝜆|−1
rig,c

(∕𝐾)(−1)𝐺𝜆×𝜇𝑛+1,𝜒𝜆 [𝜛]

from Section 3.3.2. We have results similar to those in Lemma 4.1 by simply replacing étale coho-
mology with rigid cohomology everywhere. Consider the spectral sequence [27, Prop. 8.2.17 and
8.2.18(ii)]

𝐸
𝑖,𝑗
1

= H
𝑗

rig

(
′(𝑖)

𝔽𝑝
∕ℚ𝑝

)
⇒ H

𝑖+𝑗

rig,c

(′
𝔽𝑝
∕ℚ𝑝

)
,
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and we denote by

𝛼∶ H𝑛|𝜆|−1(′

𝔽𝑝
∕ℚ𝑝

)
→ H𝑛|𝜆|−1(′(1)

𝔽𝑝
∕ℚ𝑝

)
the differential from 𝐸

0,𝑛|𝜆|−1
1

to 𝐸1,𝑛|𝜆|−1
1

. Since the varieties′(𝑖)
are smooth proper for all 𝑖 ⩾ 1,

the only contribution of weight 𝑛|𝜆| − 1 to the abutment of the spectral sequence comes from the
kernel of 𝛼. So,

gr𝑊
𝑛|𝜆|−1H𝑛|𝜆|−1

rig,c

(
′

𝔽𝑝
∕ℚ𝑝

)
≃ gr𝑊

𝑛|𝜆|−1 ker 𝛼. (4.28)

Then, use the analog of (4.7), (4.28) and the 𝑝-adic comparison theorem, we get the isomorphism
of Frobenius modules

H1
rig,mid

(
𝔾𝑚∕𝐾,Kl

𝜆
𝑛+1

)
≃
(
(M𝜆

𝑛+1)𝑝 ⊗ 𝐁𝑐𝑟𝑦𝑠
)Gal(ℚ𝑝∕ℚ𝑝) ⊗ 𝐾. □

4.2 Generalities on Deligne–Weil representations

We recall the definition of Weil–Deligne (or simply, WD-)representations from [36]. For each
prime 𝑝, there is an exact sequence

1 → 𝐼𝑝 → Gal(ℚ𝑝∕ℚ𝑝) ≃ ℤ̂ → Gal(𝔽𝑝∕𝔽𝑝) → 1,

where 𝐼𝑝 is the inertia group at𝑝. Moreover, there is a surjection 𝑡𝓁 ∶ 𝐼𝑝 → ℤ𝓁 . Let𝑊ℚ𝑝
be theWeil

group ofℚ𝑝, that is, the inverse image of the subgroup generated by Frobenius ofGal(𝔽𝑝∕𝔽𝑝) ≃ ℤ̂

in Gal(ℚ𝑝∕ℚ𝑝) equipped with the induced topology.
AWD-representation on an 𝐸-vector space𝑉 (with discrete topology) is a pair (𝑟, 𝑁), consisting

of a representation 𝑟∶ 𝑊ℚ𝑝
→ GL(𝑉)with open kernel, and an endomorphism𝑁 ∈ End(𝑉), such

that

𝑟(𝜙)𝑁𝑟(𝜙−1) = 𝑝−1𝑁

for every lift 𝜙 ∈ 𝑊ℚ𝑝
of Frob𝑝. It is called unramified if 𝑁 = 0 and 𝑟(𝐼𝑝) = 1. It is called

Frobenius semisimple if 𝑟 is semisimple. For a lift 𝜙 of Frobenius, we can decompose
𝑟(𝜙) = 𝑟(𝜙)𝑠𝑠𝑟(𝜙)𝑢 = 𝑟(𝜙)𝑢𝑟(𝜙)𝑠𝑠, where 𝑟(𝜙)𝑠𝑠 is semisimple and 𝑟(𝜙)𝑢 is unipotent. Any WD-
representation (𝑟, 𝑁) has a canonical Frobenius semisimplification (𝑟, 𝑁)𝑠𝑠, by keeping 𝑁 and
𝑟|𝐼𝑝 unchanged, and replacing 𝑟(𝜙) by 𝑟(𝜙)𝑠𝑠.
If 𝓁 ≠ 𝑝, there is a canonical way to attach a WD representation WD𝑝(𝜌) to an 𝓁-adic repre-

sentation 𝜌 of Gal(ℚ𝑝, ℚ𝑝) as follows. By Grothendieck’s quasi-unipotency theorem, there exists
an open subgroup 𝐻 of 𝐼𝑝 of finite index, and a unique nilpotent endomorphism 𝑁 satisfying
𝜌(𝜎) = exp(𝑡𝓁(𝜎)𝑁) for all 𝜎 ∈ 𝐻. Let 𝜙 be a lift of Frob𝑝 and 𝜎 ∈ 𝐼𝑝, one sets

𝑟(𝜙𝑛𝜎) ∶= 𝜌(𝜙𝑛𝜎) exp(−𝑡𝓁(𝜎)𝑁). (4.29)

Notice thatWD𝑝(𝜌) is unramified if and only if 𝜌(𝐼𝑝) = 1, that is, 𝜌 is unramified.
A WD-representation (𝑟, 𝑁) on ℚ𝓁 is called pure of weight 𝑤 [3, p. 528] if there is an exhaustive

and separated ascending monodromy filtration𝑀𝑖 of 𝑉 such that
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∙ each 𝐹𝑖𝑉 is invariant under 𝑟,
∙ for each lift 𝜙 of Frob𝑝, all eigenvalues 𝑟(𝜙𝑚) on gr𝑀𝑖 𝑉 are Weil-numbers of weight𝑚 ⋅ 𝑖,
∙ the endomorphism 𝑁 sends 𝑀𝑖𝑉 into 𝑀𝑖−2𝑉, and induces isomorphisms
𝑁𝑗 ∶ gr𝑀

𝑤+𝑗
𝑉 ≃ gr𝑀

𝑤−𝑗
𝑉 for each 𝑗 ⩾ 1.

4.3 Potential automorphy

A weakly compatible systemℛ = {𝜌𝓁} of 𝑛-dimensional 𝓁-adic representations of Gal(ℚ∕ℚ) over
ℚ and unramified outside 𝑆 is a family of continuous semisimple representations

𝜌𝓁 ∶ Gal(ℚ∕ℚ) → GL(𝑉𝓁)

for each prime number 𝓁, with the following properties.

(1) If 𝑝 ∉ 𝑆, for all 𝓁 ≠ 𝑝, the representation 𝜌𝓁 is unramified at 𝑝 and the characteristic poly-
nomial of 𝜌𝓁(Frob𝑝) is a polynomial with coefficients in ℚ, independent of the choice of
𝓁.

(2) Each representation 𝜌𝓁 is de Rham at 𝓁, and is crystalline if 𝓁 ∉ 𝑆.
(3). The Hodge–Tate weights of 𝜌𝓁 are independent of 𝓁.

To a weakly compatible system of 𝓁-adic representations, we can attach a partial 𝐿-function

𝐿𝑆(ℛ, 𝑠) =
∏
𝑝∉𝑆

det(1 − 𝜌𝓁(Frob𝑝)𝑝
−𝑠)−1.

Moreover, we callℛ strictly compatible if for each 𝑝, there exists a WD–representationWD𝑝(ℛ)

of 𝑊ℚ𝑝
over ℚ such that for each 𝓁 ≠ 𝑝 and each 𝜄 ∶ ℚ ↪ ℚ𝓁 , the push forward 𝜄WD𝑝(ℛ) is

isomorphic toWD𝑝(𝜌𝓁)
𝑠𝑠. To a strictly compatible familyℛ, we can attach an 𝐿-function

𝐿(ℛ, 𝑠) =
∏
𝑝

det
(
1 − Frob𝑝 ⋅ 𝑝−𝑠 ∣ WD𝑝(ℛ)𝐼𝑝,𝑁=0

)−1
,

which differs from 𝐿𝑆(ℛ, 𝑠) only by finitely many Euler factors at 𝑝 ∈ 𝑆. To describe the complete
𝐿-function, we still need the gamma factor at∞. Serre conjectured the form of the gamma factors
at infinity of the complete 𝐿-function for a pure motive overℚ in [33, § 3]. We denote by 𝐿∞(ℛ, 𝑠)

the gamma factor associated withℛ.

Theorem 4.30 [30, Thm. A & Cor. 2.2]. Let ℛ =
{
𝜌𝓁
}
be a weakly compatible system of 𝑛-

dimensional 𝓁-adic representations ofGal(ℚ∕ℚ) defined overℚ and unramified outside 𝑆. Suppose
that {𝜌𝓁} satisfies the following properties.

(1) (Purity) There exists an integer 𝑤 such that, for each prime 𝑝 ∉ 𝑆, the roots of the common
characteristic polynomial of 𝜌𝓁(Frob𝑝) are Weil numbers of weight 𝑤.

(2) (Regularity) The representation 𝜌𝓁 has 𝑛 distinct Hodge–Tate weights.
(3) (Odd essential self-duality) Either each 𝜌𝓁 factors through a map to GO𝑛(ℚ𝓁) with even

similitude character, or each 𝜌𝓁 factors through a map to GSp𝑛(ℚ𝓁) with odd similitude
character. Moreover, in either case, similitude characters form a weakly compatible system.
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Then, there exists a finite Galois totally real extension 𝐹∕ℚ, over which all the 𝜌𝓁 become automor-
phic. Additionally, for any distinct primes 𝑝 and 𝓁, theWD-representationWD𝑝(ℛ) ofGal(ℚ𝑝∕ℚ𝑝)

associated with 𝜌𝓁 is pure of weight 𝑤. Furthermore, the completed L-function

Λ(ℛ, 𝑠) = 𝐿∞(ℛ, 𝑠) ⋅ 𝐿(ℛ, 𝑠)

satisfies the functional equation Λ(ℛ, 𝑠) = 𝜀(ℛ, 𝑠)Λ(ℛ∨, 1 − 𝑠).

We are now in a position to prove Theorem 1.6 using the above theorem of Patrikis–Taylor.

Proof of Theorem 1.6. Assume that 𝑘 ⩾ 3 because by Proposition 3.8, we have dimM𝑘
𝑛+1

= 0when
𝑘 ⩽ 2. Let 𝑆(𝑘, 𝑛 + 1) be the set of primes 𝑝 such that either 𝑝 ∣ 𝑛 + 1 or′

𝔽𝑝
is not smooth.

We start with verifying that the family of semisimplifications of 𝓁-adic Galois representations
ℛ = {(M𝑘

𝑛+1
)𝑠𝑠𝓁 } is weakly compatible. Indeed, it is sufficient to demonstrate that the three con-

ditions of weakly compatible systems are satisfied for {(M𝑘
𝑛+1

)𝓁}. The first two conditions are
readily derived from Theorem 4.5 and Proposition 4.27. Regarding the third condition, we fix an
embedding ℚ𝑝 ↪ ℂ and utilize the 𝑝-adic comparison theorem to obtain a filtered isomorphism
as follows ∶

(
(M𝑘

𝑛+1)𝑝 ⊗ 𝐁dR

)Gal(ℚ𝑝∕ℚ𝑝)
⊗ ℂ =

(
gr𝑊

𝑛𝑘+1
H𝑛𝑘−1
�́�𝑡,𝑐

(
ℚ𝑝
, ℚ𝑝)

𝑆𝑘×𝜇𝑛+1,𝜒𝑛 (−1) ⊗ 𝐁dR

)Gal(ℚ𝑝∕ℚ𝑝)
⊗ ℂ

= gr𝑊
𝑛𝑘+1

H𝑛𝑘−1
�́�𝑡,𝑐

(
ℚ𝑝
, ℚ𝑝)

𝑆𝑘×𝜇𝑛+1,𝜒𝑛 (−1) ⊗ ℂ ≃ (M𝑘
𝑛+1)dR,

As a consequence, the Hodge–Tate weights are independent of 𝓁.
In order to apply the Theorem 4.30 to the weakly compatible familyℛ, it is necessary to verify

the conditions stated in Theorem 4.30. The purity is satisfied because the Galois representations
(M𝑘

𝑛+1
)𝓁 , as well as their semisimplifications, are pure of weight 𝑛𝑘 + 1. The regularity condition

is also fulfilled for pairs (𝑛 + 1, 𝑘) presented in Theorem 1.6, as the multiplicities of Hodge–Tate
weights of (M𝑘

𝑛+1
)𝓁 (and their semisimplifications) are either 0 or 1, by Corollary 3.6 and the

comparison isomorphism above.
The odd essential self-duality forℛ can be verified as follows. The perfect pairing, as described

in Proposition 3.5, indicates that the representations (M𝑘
𝑛+1

)𝓁 factor through eitherGSP((M𝑘
𝑛+1

)𝓁)

or GSO((M𝑘
𝑛+1

)𝓁), with a similitude character 𝜒𝑛𝑘+1
𝑐𝑦𝑐 . By selecting a generator of ℚ𝓁(−𝑛𝑘 − 1),

we can regard the perfect pairing as a compatible nondegenerate bilinear form on the module
(M𝑘

𝑛+1
)𝓁 over the group ring of Gal(ℚ∕ℚ), with the involution g ↦ 𝜒−𝑛𝑘−1

𝑐𝑦𝑐 (g)g−1. According to
[35, Thm. 4.2.1], the semisimplification also factors through either GSP or GSO, with the same
character. This establishes the odd essential self-duality forℛ.
According to Theorem 4.30, the weakly compatible familyℛ is potentially automorphic, and

the partial 𝐿-function 𝐿𝑆(ℛ, 𝑠) extends to a meromorphic function on ℂ satisfying a functional
equation. Observe that the partial 𝐿-function ofℛ agrees with 𝐿𝑆(𝑘, 𝑛 + 1; 𝑠), as their local factors
coincide for each 𝑝 ∉ 𝑆(𝑘, 𝑛 + 1), which can be verified by applying Theorem 4.15, Remark 4.25,
and [16, Lem. 5.40]. As a result, the partial 𝐿-function 𝐿𝑆(𝑘, 𝑛 + 1; 𝑠) can be completed to
Λ𝑘(𝑠) = 𝐿∞(ℛ, 𝑠) ⋅ 𝐿 (ℛ, 𝑠), which extends meromorphically to the whole complex plane and
satisfies the claimed functional equation in Theorem 1.6. □
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5 CONJECTURES OF EVANS TYPE

In this section, we prove Theorem 1.7 with the help of the database LMFDB [37]. Recall that a
modular form will refer to a normalized holomorphic cuspidal Hecke eigenform.

5.1 Modularity

5.1.1 Galois representations attached to modular forms

One can attach two-dimensional Galois representations to modular forms 𝑓 ∈ 𝑆𝑘(Γ1(𝑁)) of
weight 𝑘, as constructed in [8, 11]. More precisely, let 𝑁 and 𝑘 be positive integers, 𝑓 ∈ 𝑆𝑘(Γ(𝑁))

a modular form, and 𝐾𝑓 = ℚ(𝑎𝑓(𝑝)) the number field generated by the Fourier coefficients of 𝑓.
Then, for any place 𝜆 of 𝐾𝑓 over a prime 𝓁 ∤ 𝑁, there exists a continuous odd irreducible Galois
representation

𝜌𝑓,𝜆 ∶ Gal(ℚ∕ℚ) → GL2(𝐾𝑓,𝜆), (5.1)

unramified if 𝑝 ∤ 𝑁, such that for 𝑝 ∤ 𝑁𝓁, the trace of the arithmetic Frobenius Frob−1𝑝 at 𝑝 is
𝑎𝑝(𝑓).
Notice that 𝜌𝑓,𝜆 has conductor𝑁 and Hodge–Tate weight (0, 𝑘 − 1). Moreover, it is odd, that is,

the value of det(𝜌𝑓,𝜆) at the complex conjugation is −1.
Given such a 𝜌𝑓,𝜆, we denote by 𝜌𝑓,𝜆 ∶ Gal(ℚ∕ℚ) → GL2(𝔽𝓁) its mod 𝓁 reduction. It is obtained

by choosing a Galois stable 𝜆-lattice in 𝐾2
𝑓,𝜆

and reducing modulo the maximal ideal of 𝜆,
where 𝜆 is the ring of integers of 𝐾𝜆. Although 𝜌𝑓,𝜆 depends on the choice of the lattice, its
semisimplification does not.

5.1.2 A special case of modularity

We recall a weaker version of a theorembyKisin [25, Thm. 1.4.3], which says that the𝓁-adic Galois
representations associated with certain two-dimensionalmotives aremodular, that is, isomorphic
to one 𝜌𝑓,𝓁 in (5.1). The argument is originally due to Serre [34, §4.8], with similar arguments also
appearing in [41, Thm. 4.6.1].

Theorem 5.2. LetM be a pure motive of dimension 2 overℚ with coefficients inℚ. Assume that the
nonzero Hodge numbers of the de Rham realization ofM are ℎ𝑟,𝑠 = ℎ𝑠,𝑟 = 1 for some 0 ⩽ 𝑟 < 𝑠, and
the 𝓁-adic Galois representationsM𝓁 are odd and absolutely irreducible. Then, for some𝑁 ⩾ 1 and
some Dirichlet character 𝜀 ∶ ℤ∕𝑁ℤ× → ℂ×, there exists a modular form 𝑓 ∈ 𝑆𝑠−𝑟+1(Γ0(𝑁), 𝜀) such
that 𝜌𝑓,𝓁 ≃ M𝓁(𝑟).

Remark 5.3. By (4.8.8) and the last paragraph in [34, p. 216], the 2-adic and 3-adic valuation of 𝑁
are at most 8 and 5, respectively.

5.2 Conjectures of Evans type

In this subsection, we prove Theorem 1.7 by considering each case individually.
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5.2.1 𝜀-factors

In order to apply Theorem 5.2 formotives attached toKloosterman sheaves, it is necessary to check
that the associated Galois representations are odd. This is ensured by the following Proposition
and Chebotarev’s density theorem.

Proposition 5.4. If 𝑛|𝜆| is even, then
𝜀(ℙ1

𝔽𝑝
, 𝑗∗Kl

𝜆
𝑛+1) = 𝑝

𝑛|𝜆|+1
2

⋅dimH1
�́�𝑡,mid

(
𝔾
𝑚,𝔽𝑝

,Kl𝜆
𝑛+1

)
.

Proof. By applying Corollary 3.10, we find that the middle 𝓁-adic cohomology
H1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1
)
is a symplectic representation of Gal(𝔽𝑝∕𝔽𝑝). Consequently, the determi-

nant of Frob𝑝 is a power of 𝑝. Taking into consideration both the dimension and the weight of
H1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1
)
, we deduce that

𝜀
(
ℙ1
𝔽𝑝
, 𝑗∗Kl

𝜆
𝑛+1

)
= det

(
−Frob𝑝,H

1
�́�𝑡

(
ℙ1
𝔽𝑝
, 𝑗∗Kl

𝜆
𝑛+1

))
= det

(
Frob𝑝,H

1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl𝜆𝑛+1
))

= 𝑝
𝑛|𝜆|+1

2
dimH1

�́�𝑡,mid

(
𝔾
𝑚,𝔽𝑝

,Kl𝜆
𝑛+1

)
. □

5.2.2 Sym4Kl3

The motiveM4
3
is defined over ℚ, pure of weight 9 and equipped with a skew-symmetric perfect

pairing, as described in Proposition 3.5. It has dimension 2, and the Hodge numbers ℎ𝑝,9−𝑝 of its
de Rham realization are 1 if 𝑝 = 3 or 6, and 0 otherwise by [32, Thm. 1.2]. Our goal is to show that
the compatible system of Galois representations {(M4

3
)𝓁(6)} is modular.

Proposition 5.5. There exists a (unique) modular form 𝑓 in 𝑆4(Γ0(14)), such that for each prime
𝑝 ∉ {2, 7}, the Fourier coefficient 𝑎𝑝(𝑓) satisfies

𝑎𝑓(𝑝) = −
1

𝑝3
(𝑚4

3(𝑝) + 1 + 𝑝2 + 𝑝4),

where 𝑚4
3
(𝑝) is the symmetric power moment of Sym4Kl3. In particular, the label of this modular

form in the database LMFDB is 14.4.𝑎.𝑏.

Proof. By (4.3), we find that the hypersurface 
𝔽𝑝

in (3.1) is smooth if the number 𝑑(4, 3, 𝑝)
in Section 2.5.1 is 0. According to Theorem 4.5, we find that the 𝓁-adic representation (M4

3
)𝓁 is

unramified at 𝑝 ≠ 2, 3, 7. As noted in Remark 4.12, the 𝓁-adic representation (M4
3
)𝓁 is also unram-

ified at 𝑝 = 3, because the middle 𝓁-adic cohomology H1
�́�𝑡,mid

(
𝔾𝑚,𝔽3

, Sym4Kl3
)
has dimension 2

by Corollary 2.34. Additionally, Corollary 4.26 tells us that the conductor of the compatible family
{(M4

3
)𝓁}𝓁 is 14.

Since the motive M4
3
is pure of weight 9 and its nonzero Hodge numbers are given by

ℎ3,6 = ℎ6,3 = 1, the Hodge–Tate weight of (M4
3
)𝓁(6) is (0,3) with multiplicity 1 by the 𝑝-adic

comparison theorem.
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According to Proposition 5.4 and Chebotarev density theorem, we find that the determinant
det

(
(M4

3
)𝓁(6)

)
is equal to 𝜒3

𝑐𝑦𝑐,𝓁 . As 𝜒𝑐𝑦𝑐,𝓁(𝑐) = −1, the representation (M4
3
)𝓁(6) is odd. Thus,

{(M4
3
)𝓁(6)} is modular according to Theorem 5.2.

By the exact sequence (2.5), Theorem 2.15, and Theorem 2.18, we deduce that

Tr(Frob𝑝 ∣ (M
4
3)𝓁) = −(𝑚4

3(𝑝) + 1 + 𝑝 + 𝑝2).

It follows that for any 𝑝 ∉ {2, 7,𝓁},

𝑎𝑓(𝑝) = Tr(Frob−1𝑝 ∣ (M4
3)𝓁(6)) = −

1

𝑝3
(𝑚4

3(𝑝) + 1 + 𝑝 + 𝑝2).

Now, the remaining task is to identify the modular form. The weight and the level of the cor-
responding modular form are 𝑘 = 4 and 𝑁𝑓 = 14. By computing the Fourier coefficient 𝑎𝑓(3),
as detailed in Section A.1.1, we find that this modular form 𝑓 is labeled 14.4.𝑎.𝑏 in the database
LMFDB. □

5.2.3 Sym3Kl4

The motiveM3
4
is defined over ℚ, pure of weight 10, and equipped with a symmetric perfect pair-

ing. It has dimension 2, and the nonzero Hodge numbers ℎ𝑝,10−𝑝 of its de Rham realization are
1 if 𝑝 = 4 or 6 by [32, Thm. 1.2]. We aim to demonstrate that the compatible family of Galois
representations {(M3

4
)𝓁(6)} is modular.

Proposition 5.6. There exists a (unique) modular form 𝑓 in 𝑆3(Γ0(15), (
⋅
15
)) with complex

multiplication, such that for each prime 𝑝 ∉ {2, 5}, the Fourier coefficient 𝑎𝑓(𝑝) satisfies

𝑎𝑓(𝑝) = −
( 𝑝

15

)
1

𝑝4
(𝑚3

4(𝑝) + 1 + 𝑝2 + 𝑝3).

Here,𝑚3
4
(𝑝) is the symmetric powermoment of Sym3Kl4. In particular, the label of the corresponding

modular form is 15.3.𝑑.𝑎 in the database LMFDB.

Proof. Based on (4.3), Theorem 4.5, and Theorem 4.15, we know that (M3
4
)𝓁 is

unramified if 𝑝 ≠ 2, 3, 5, and tamely ramified if 𝑝 = 3, 5. Moreover, applying Proposition 2.22,
we obtain the dimension of the middle 𝓁-adic cohomologies of Sym3Kl4 at 𝑝 ≠ 2. Hence,
(M3

4
)
𝐼𝑝
𝓁 ≃ H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl4
)
has dimension 1 when 𝑝 = 3 or 5. This implies that the

conductor 𝑁 of {(M3
4
)𝓁} is of the form 2𝑠 ⋅ 15 for some 𝑠 ∈ ℤ⩾0.

Lemma 5.7. For each 𝓁 ≠ 2, the representation (M3
4
)𝓁 is unramified at 𝑝 = 2. In particular, the

conductor𝑁 of {(M3
4
)𝓁} is 15.

Proof. At 𝑝 = 2, the Swan conductor of Sym3Kl4 is at most 5. Since the monodromy
group of Kl4 is Sp4 and the symmetric power of standard representation of SP4 remains
irreducible, the zeroth cohomologyH0

�́�𝑡
(𝔾𝑚,𝔽𝑝

, Sym3Kl4) vanishes. By the exact sequence (2.5) and
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Grothendieck–Ogg–Shafarevich formula, we deduce that

dimH1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl4
)
= Sw(Sym3Kl4) − 3 − dim(Sym3Kl4)

𝐼∞.

As a result, we find that 3 ⩽ Sw(Sym3Kl4) ⩽ 5.
By Section A.2.1, the trace of Frobenius at 𝑝 = 2 on H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl4
)
is

−(𝑚3
4(𝑝) + 1 + 𝑝2 + 𝑝3 + Tr(Frob𝑝 ∣ (Sym

3Kl4)
𝐼∞)) = −16 − Tr(Frob𝑝 ∣ (Sym

3Kl4)
𝐼∞).

We proceed by examining each possible value of Sw(Sym3Kl4) as follows.

∙ If Sw(Sym3Kl4) = 5, the sheaf Sym3Kl4 has only one slope (equal to 1∕4) at∞, which implies
that (Sym3Kl4)

𝐼∞ = 0. So, the dimension of the middle 𝓁-adic cohomology is 2. As a result, the
representation (M3

4
)𝓁 is unramified at 𝑝 = 2, thanks to Remark 4.12.

∙ If Sw(Sym3Kl4) = 4, then dim(Sym3Kl4)
𝐼∞ ⩽ 1.

– If dim(Sym3Kl4)
𝐼∞ = 1, the middle 𝓁-adic cohomology of Sym3Kl4 is 0. The trace of Frob2

on H1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl4
)
is 0. So, we obtain

0 = −16 − Tr(Frob𝑝 ∣ (Sym
3Kl4)

𝐼∞).

This is impossible because (Sym3Kl4)
𝐼∞ is pure of weight 9 and one-dimensional.

– If dim(Sym3Kl4)
𝐼∞ = 0, the middle 𝓁-adic cohomology is one-dimensional. The trace of

Frob2 on H1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl4
)
is −16. However, since H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl4
)
is pure

of weight 10 and one-dimensional, this situation is not possible.
∙ If Sw(Sym3Kl4) = 3, then dim(Sym3Kl4)

𝐼∞ = 0. So, the dimension of the middle 𝓁-adic coho-
mology is 0. However, the trace of Frob2 on H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl4
)
is at the same time 0 and

−16, which is absurd.

In conclusion, we deduce that Sw(Sym3Kl4) = 5 and the representation (M3
4
)𝓁 is unramified at 2.

As a consequence, the conductor 𝑁 is 20 ⋅ 15 = 15. □

By the 𝑝-adic comparison theorem and our computation of the Hodge numbers for the motive
M3

4
, we determine that the Hodge–Tate weight of {(M3

4
)𝓁(6)} is (0,2). Observe that these Galois

representations (M3
4
)𝓁 are orthogonal, as we have a symmetric perfect paring on the motive M3

4
given in Proposition 3.5. According to [28, 1.4(2)], the associated Galois representation {(M3

4
)𝓁(6)}

corresponds to a modular form 𝑓 = 𝑞 +
∑∞

𝑛=2 𝑎𝑛𝑞
𝑛 ∈ 𝑆3(15, 𝜀𝑓) of complex multiplication for

some characters 𝜀𝑓 ∶ ℤ∕15ℤ → ℂ×. Moreover, for any 𝑝 ∉ {3, 5} ∪ {𝓁}, we deduce that

𝑎𝑓(𝑝) = Tr(Frob−1𝑝 ∣ (M3
4)𝓁(6)) = det

(
(M4

3)𝓁(6)
)−1

⋅ Tr(Frob𝑝 ∣ (M
3
4)𝓁(6))

= −𝜀−1
𝑓

⋅
1

𝑝4
(𝑚3

4(𝑝) + 1 + 𝑝2 + 𝑝3).

At this point, the remaining task is to identify the modular form. We already know that this
modular form has level 15 and weight 3.

Lemma 5.8. The character 𝜀𝑓 is the Legendre symbol (
∙

15
).
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Proof. Using LMFDB, we find that there are only two modular forms with level 15 and weight 3.
Their characters are both given by the Legendre symbol ( ∙

15
). □

To summarize, we have determined that the desired modular form has weight 𝑘 = 3, level 15,
and nebentypus 𝜀𝑓 = ( ⋅

15
). However, there are still two possibilities in LMFDB. To determine the

correct one, we use the Frobenius trace 𝑎𝑓(2) = −1 of (M3
4
)𝓁(6) in Section A.2. Our search in the

LMFDB database yields a unique match: the modular form labeled 15.3.𝑑.𝑏. □

5.2.4 Sym4Kl4

The two-dimensional motive M4
4
is defined over ℚ, pure of weight 13, and equipped with an

antisymmetric perfect self-pairing.

Proposition 5.9. There exists a (unique) modular form 𝑓 in 𝑆6(Γ0(10)), such that for each prime
𝑝 ∉ {2, 5}, the Fourier coefficient 𝑎𝑓(𝑝) satisfies

𝑎𝑓(𝑝) = −
1

𝑝4
(𝑚4

4(𝑝) + 1 + 𝑝2 + 𝑝3 + 𝑝4 + 2𝑝6),

where𝑚4
4
(𝑝) is the symmetric powermoment of Sym4Kl4. In particular, the label of the corresponding

modular form is 10.6.𝑎.𝑎. in the database LMFDB.

Proof. By Theorems 4.5, the representation (M4
4
)𝓁 is unramified at 𝑝 ≠ 2, 5, as ′

𝔽𝑝
in Sec-

tion 4.1.1 is smooth in this case, that is, 𝑑(4, 4, 𝑝) − 𝑑(4, 4) = 0 in (4.3). Moreover, we deduce from
Theorem 4.15 that the representation (M4

4
)𝓁 is possibly wildly ramified at 𝑝 = 2, and is tamely

ramified at 𝑝 = 5. According to Corollary 4.26 and Remark 5.3, the conductor of the compatible
family {(M4

4
)𝓁}𝓁 is of the form 𝑁 = 2𝑠 ⋅ 5 for some 0 ⩽ 𝑠 ⩽ 8.

By the Hodge symmetry, there exists an integer ℎ ∈ {0, 1, … , 6} such that the Hodge
numbers ℎ𝑝,13−𝑝 ofM4

4
are 1 if 𝑝 = ℎ or 13 − ℎ, and 0 otherwise. Hence, the Hodge–Tate weights

of (M4
4
)𝓁(13 − ℎ) are (0, 13 − 2ℎ).

The determinant of the Galois representations (M4
4
)𝓁(13 − ℎ) is an odd character 𝜒13−2ℎ

𝑐𝑦𝑐 ,
according to Proposition 5.4 and the Chebotarev density theorem. Then, the existence of the
modular form is provided by Theorem 5.2. It follows that for any 𝑝 ∉ {2, 5,𝓁},

𝑎𝑓(𝑝) = Tr(Frob−1𝑝 ∣ (M4
4)𝓁(13 − ℎ)) = −

1

𝑝ℎ
(𝑚4

4(𝑝) + 1 + 𝑝2 + 𝑝3 + 𝑝4 + 2𝑝6).

At last, we can compute the Fourier coefficients 𝑎𝑓(3) = −26 ⋅ 34−ℎ and 𝑎𝑓(7) = −22 ⋅ 74−ℎ by
numerical results in SectionA.2.2.Notice that LMFDBcontains the complete list ofmodular forms
when𝑘2 ⋅𝑁 ⩽ 40 000.We try 0 ⩽ ℎ ⩽ 6 and 0 ⩽ 𝑠 ⩽ 8 one by one. If (𝑠, ℎ) = (8, 0), (8, 1), (8, 2) (8,3),
(8,4), (7,0), (7,1), (7,2), (7,3), (6, 0), or (6,1), we have 𝑘2 ⋅𝑁 > 40 000. In this case, the database
LMFDB is insufficient for our needs. So, we follow the appendix in [41] to compute the space
of cuspidal new modular symbols over the finite field 𝔽𝑝. We find that for some primes 𝑝, the
numbers 𝑎𝑓(𝑝) are not roots of the characteristic polynomials of theHecke operators𝑇𝑝, as shown
in the table in Section A.2.2. In the remaining possible cases, we find two remaining modular
forms in the database of weight 6 with the prescribed Fourier coefficients. By considering the
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level, there is only one left with the label 10.6.𝑎.𝑎. in LMFDB because the other one is of level
400 □

Remark 5.10. We deduced from the proof above that the nonzero Hodge numbers of the de Rham
realization of M4

4
are ℎ4,9 = ℎ9,4 = 1. Although the Hodge numbers were not computed directly

in [32], they can still be calculated by following an argument similar to that ofM3𝑘
3
.

5.2.5 Sym3Kl5

The motiveM3
5 is defined over ℚ, pure of weight 13, and equipped with an antisymmetric perfect

pairing. It has dimension 2. According to [32, Thm. 1.2], theHodge numbersℎ𝑝,13−𝑝 of its de Rham
realization are 1 if 𝑝 = 5 or 8, and 0 in other cases. We aim to show that the compatible family of
Galois representations {(M3

5)𝓁(8)} is modular.

Proposition 5.11. There exists a (unique) modular form 𝑓 in 𝑆4(Γ0(33)), such that for each prime
𝑝 ∉ {3, 11}, the Fourier coefficient 𝑎𝑓(𝑝) satisfies

𝑎𝑓(𝑝) = −
1

𝑝5
(𝑚3

5(𝑝) + 1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝6), (5.12)

where𝑚3
5(𝑝) is the symmetric powermoment of Sym

5Kl3. In particular, the label of the corresponding
modular form is 33.4.𝑎.𝑏 in the database LMFDB.

Proof. The representation (M2
5)𝓁 is unramified at 𝑝 if 𝑝 ∉ {3, 5, 11,𝓁} by Theorem 4.5 and (4.3).

According to Corollary 4.26, the conductor of {(M3
5)𝓁(8)} is of the form 3𝑠 ⋅ 5𝑡 ⋅ 11𝑒 for some

0 ⩽ 𝑠, 𝑒 ⩽ 2 and 0 ⩽ 𝑡.

Lemma 5.13. If 5 ≠ 𝓁, the representation (M3
5)𝓁 is unramified at 5.

Proof. At 𝑝 = 5, the Swan conductor of Sym3Kl5 is at most 7. Given that the monodromy
group of Kl5 is SL5 and the symmetric power of standard representation of SL5 remains
irreducible, the zeroth cohomology H0

�́�𝑡
(𝔾𝑚,𝔽𝑝

, Sym3Kl5) vanishes. By the exact sequence (2.5)
and the Grothendieck–Ogg–Shafarevich formula, we obtain that

dimH1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl5
)
= Sw(Sym3Kl5) − 5 − dim(Sym3Kl5)

𝐼∞.

Consequently, we have 5 ⩽ Sw(Sym3Kl5) ⩽ 7. According to the numerical results in Section A.3,
the trace of H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl5
)
at 𝑝 = 5 is given by

−
(
𝑚3
5(𝑝) + 1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝6 + Tr

(
Frob𝑝 ∣

(
Sym3Kl5

)𝐼∞))
= −4 ⋅ 55 − Tr

(
Frob𝑝 ∣

(
Sym3Kl5

)𝐼∞).
Now we proceed by examining each possible value of Sw(Sym3Kl5) as follows.
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∙ If Sw(Sym3Kl5) = 7, the sheaf Sym3Kl5 only has one slope (=1∕5) at ∞. We deduce that the
dimension of (Sym3Kl5)

𝐼∞ is 0. Thus, the dimension of the middle 𝓁-adic cohomology of
Sym3Kl5 is 2. By Remark 4.12, the representation (M3

5)𝓁 is unramified at 5.
∙ If Sw(Sym3Kl5) = 6, then dim(Sym3Kl5)

𝐼∞ ⩽ 1. We consider two cases.
(1) Assume that dim(Sym3Kl5)

𝐼∞ = 1, then themiddle 𝓁-adic cohomology vanishes. The trace
of Frobenius on H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl5
)
at 𝑝 = 5 is 0. So, we have

0 = −4 ⋅ 55 − Tr(Frob𝑝 ∣ (Sym
3Kl5)

𝐼∞).

Since (Sym3Kl5)
𝐼∞ is pure of weight 12 and of dimension 1, this is impossible.

(2) Assume that dim(Sym3Kl5)
𝐼∞ = 0, the middle 𝓁-adic cohomology is one-dimensional. The

trace of H1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl5
)
at prime 𝑝 = 5 is −4 ⋅ 55. Since H1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl5
)

is pure of weight 13 and of dimension 1, it leads to a contradiction.
∙ If Sw(Sym3Kl5) = 5, then dim(Sym3Kl5)

𝐼∞ = 0. So, the dimension of the middle 𝓁-adic coho-
mology of Sym3Kl5 is 0. The trace ofH1

�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Sym3Kl5
)
at prime 𝑝 = 5 is at the same time

0 and −4 ⋅ 55, which is absurd.

In conclusion, we have Sw(Sym3Kl5) = 7 and the representation (M3
5)𝓁 is unramified at 5. □

Consider the Galois representations (M3
5)𝓁(8). The Hodge–Tate weights of (M

3
5)𝓁(8) are (0,3).

Their determinants are the odd characters 𝜒3
𝑐𝑦𝑐 by Proposition 5.4 and the Chebotarev density

theorem. The existence of the modular form is guaranteed by Theorem 5.2. Consequently, we
deduce (5.12) for any 𝑝 ∉ {3, 11,𝓁}.
Thus, the modular form we are seeking has weight 4, and its level is of the form

𝑁𝑓 = 3𝑠 ⋅ 11𝑒 ⩽ 1089, with 0 ⩽ 𝑠, 𝑒 ⩽ 2. Furthermore, we compute the Fourier coefficients
𝑎(2) = −1 and 𝑎(5) = −4 in Section A.3. Given this information, there is only one remaining
modular form, with weight 4 and level 𝑁 = 33, which is labeled as 33.4.𝑎.𝑏 in the LMFDB
database. □

5.2.6 Kl(2,1)
3

ThemotiveM(2,1)
3

is defined overℚ, pure of weight 9 and equipped with an antisymmetric perfect
pairing. It has dimension 2, and the Hodge numbers ℎ𝑝,9−𝑝 of its de Rham realization is 1 if 𝑝 = 4

or 5 and is 0 otherwise by [32, Prop. 5.20]. We want to show that the compatible family of Galois
representations {

(
M(2,1)

2

)
𝓁(5)} is modular.

Proposition 5.14. There exists a (unique) modular form 𝑓 ∈ 𝑆2(Γ0(14)), such that for each prime
𝑝 ∉ {2, 3, 7}, the Fourier coefficient 𝑎𝑝 satisfies

𝑎𝑓(𝑝) = −
1

𝑝4

(
𝑚(2,1)
3

(𝑝) + 𝑝 + 𝑝2 + 𝑝3
)
, (5.15)

where𝑚(2,1)
3

(𝑝) is themoment of the sheafKl(2,1)
3

. In particular, thismodular form is labeled 14.2.𝑎.𝑎
in the database LMFDB.
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Proof. The sheaf Kl(2,1)
3

is tamely ramified at 0 and wildly ramified at∞. By Grothendieck–Ogg–
Shafarevich formula (2.4), the dimension of the𝓁-adic cohomology is equal to the Swan conductor
at ∞. Similar to Proposition 2.32, since Kl(2,1)

3
⊂ Kl⊗4

3
and 𝜁3 acts on (Kl⊗4

3
)𝜂∞ freely, we can

compute that the Swan conductor of Kl(2,1)
3

at ∞ is 5 when 𝑝 = 3. By the exact sequence (2.5),
Proposition 2.17, and Proposition 2.19, we have

dimH1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl(2,1)
3

)
=

{
2 𝑝 ≠ 2, 7

1 𝑝 = 2, 7

and

Tr
(
Frob𝑝,

(
M

(2,1)
3

)
𝓁(4)

)
= −𝑝−4(𝑚

(2,1)
3

(𝑝) + 𝑝 + 𝑝2 + 𝑝3).

By Remark 4.12 and Corollary 4.26, the representation (M(2,1)
3

)𝓁 is unramified at 𝑝 ∉ {2, 7,𝓁} and
the conductor of the compatible family {(M(2,1)

3
)𝓁}𝓁 is 14.

Using Proposition 5.4 and the Chebotarev density theorem, the determinant of (M(2,1)
3

)𝓁(5) is
𝜒−1
𝑐𝑦𝑐, which is odd. Then, Theorem 5.2 shows the existence of the modular form and we deduce

(5.15) for any 𝑝 ≠ 2, 7,𝓁.
At last, by computations of Fourier coefficients 𝑎𝑓(𝑝) in Section A.1.2 for 𝑝 ⩽ 23, we can

determine the modular form in the database LMFDB. □

5.2.7 Kl(2,2)
3

ThemotiveM(2,2)
3

is defined overℚ, pure of weight 13 and equippedwith an antisymmetric perfect
pairing in Proposition 3.5.

Proposition 5.16. There exists a (unique)modular form𝑓 = 𝑞 +
∑∞

𝑛⩾2 𝑎𝑛𝑞
𝑛 ∈ 𝑆4(Γ0(6)), such that

for each prime 𝑝 ∉ {2, 3}, the Fourier coefficient 𝑎𝑓(𝑝) satisfies

𝑎𝑓(𝑝) = −
1

𝑝5

(
𝑚(2,2)
3

(𝑝) + 𝑝2 + 𝑝3 + 2𝑝4 + 2𝑝6
)
,

where𝑚(2,2)
3

(𝑝) is the moment of the sheafKl(2,2)
3

. In particular, this modular form is labeled 6.4.𝑎.𝑎
in the database LMFDB, the same as the modular form corresponding to Sym6Kl2.

Proof. The sheaf Kl(2,2)
3

is tamely ramified at 0 and wildly ramified at ∞. By Proposition 2.17,
Proposition 2.19, and the long exact sequence (2.5), we obtain that

dimH1
�́�𝑡,mid

(
𝔾𝑚,𝔽𝑝

, Kl(2,2)
3

)
=

{
2 𝑝 ≠ 2, 3

1 𝑝 = 2

and

Tr
(
Frob𝑝,

(
M

(2,2)
3

)
𝓁(5)

)
= −𝑝−5(𝑚

(2,2)
3

(𝑝) + 𝑝2 + 𝑝3 + 2𝑝4 + 2𝑝6)
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if 𝑝 ≠ 2, 3. By Remark 4.12, the set of bad primes 𝑆 is a subset of {2, 3}, and dim(M(2,2)
3

)𝓁 = 2.
According to Theorem 4.5 and Corollary 4.26, the Galois representation (M(2,2)

3
)𝓁 is tamely rami-

fied at 𝑝 = 2 and its Artin conductor at 𝑝 = 2 is 1. As a consequence of Remark 5.3, the conductor
of {(M(2,2)

3
)𝓁}𝓁 is of the form 𝑁 = 2 ⋅ 3𝑠 for some 0 ⩽ 𝑠 ⩽ 5.

By the Hodge symmetry, there exists an integer ℎ ∈ {0, 1, … , 6} such that the Hodge num-
bers ℎ𝑝,13−𝑝 are 1 if 𝑝 = ℎ or 13 − ℎ, and are 0 otherwise. Hence, the Hodge–Tate weights of
(M

(2,2)
3

)𝓁(13 − ℎ) are (0, 13 − 2ℎ).
By Proposition 5.4 and Chebotarev density theorem, we have det(M(2,2)

3
)𝓁 = 𝜒−13

𝑐𝑦𝑐 . Thus, the
determinant of (M(2,2)

3
)𝓁(13 − ℎ) is 𝜒13−2ℎ

𝑐𝑦𝑐 , which is an odd character. Therefore, Theorem 5.2
guarantees the existence of a modular form of weight 14 − 2ℎ and of level 2 ⋅ 3𝑠 such that
(M

(2,2)
3

)𝓁(13 − ℎ) ≃ 𝜌𝑓,𝓁 . It follows that for any 𝑝 ∉ 𝑆 ∪ {𝓁},

𝑎𝑓(𝑝) = Tr(Frob−1𝑝 ∣ ((M
(2,2)
3

)𝓁(13 − ℎ)) = −
1

𝑝ℎ

(
𝑚
(2,2)
3

(𝑝) + 𝑝2 + 𝑝3 + 2𝑝4 + 2𝑝6
)
.

To determine the modular form, we use a similar argument to that in Proposition 5.9. We test
the combinations 0 ⩽ ℎ ⩽ 6 and 0 ⩽ 𝑠 ⩽ 5 one by one. If (𝑠, ℎ) = (5, 0), (5, 1) or (5,2), we compute
the space of cuspidal new modular symbols over the finite field 𝔽𝑝. We find that for some primes
𝑝, the numbers 𝑎𝑓(𝑝) are not roots of the characteristic polynomials of the Hecke operators 𝑇𝑝,
as shown in the table in Section A.1.2. Therefore, (𝑠, ℎ) ≠ (5, 0), (5, 1) or (5,2), and we proceed to
search the modular form within LMFDB. The remaining modular form has weight 4 and level 6,
corresponding to (𝑠, ℎ) = (1, 5) in this case. □

Remark 5.17. The nonzeroHodge numbers of the de Rham realization ofM(2,2)
3

are ℎ5,8 = ℎ8,5 = 1.
We cannot calculate these using the methods for [32, Thm. 1.2], as the nilpotent part of the local
monodromy of the connection Kl

(2,2)
3

at 0 is not a direct sum of Jordan blocks of different sizes
(there are two blocks of size 4).

5.2.8 A conjecture

One interesting corollary of Proposition 5.16 is that for 𝑝 ∤ 6, the moments of the sheaves
Sym6Kl2 and Kl

(2,2)
3

, as they both correspond to the modular form with label 6.4.𝑎.𝑎. As a direct
consequence, we have the identity

𝑚
(2,2)
3

(𝑝) − 𝑝3𝑚6
2(𝑝) = −2𝑝6 − 2𝑝4 − 𝑝2. (5.18)

Moreover, we have isomorphisms of 𝓁-adic Galois representations (M6
2
)𝓁(−3) ≃ (M

(2,2)
3

)𝓁 , which
leads us the following conjecture.

Conjecture 5.19. The two motivesM6
2
(−3) andM(2,2)

3
are isomorphic.

APPENDIX
A COMPUTATION OFMOMENTS
In this article, we used several numerical results computed using the software Sagemath [38].
This appendix explains the algorithms and all codes can be found on my web page. We fix an
embedding 𝜄 ∶ ℚ𝓁 ↪ ℂ and identify 𝓁-adic numbers with their images in ℂ via 𝜄.
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A.1 Computations of𝑚𝑘
3
(𝑝),𝑚(2,1)

3
(𝑝) and𝑚(2,2)

3
(𝑝)

A.1.1 𝑚𝑘
3
(𝑝)

For a prime number 𝑝, after Deligne [9, Somme. Trig.], we know that for each 𝑎 ∈ 𝔽×𝑝 ,
there exist three algebraic numbers 𝛼𝑎, 𝛽𝑎 and 𝛾𝑎, of absolute value 𝑝, such that
𝑠1(𝑎) = 𝛼𝑎 + 𝛽𝑎 + 𝛾𝑎 = Kl3(𝑎; 𝑝) and 𝑠3(𝑎) = 𝛼𝑎 ⋅ 𝛽𝑎 ⋅ 𝛾𝑎 = 𝑝3. Then, the degree two elementary
symmetric polynomials are

𝑠2(𝑎) ∶= 𝛼𝑎𝛽𝑎 + 𝛽𝑎𝛾𝑎 + 𝛾𝑎𝛼𝑎 = 𝑝3(𝛼−1𝑎 + 𝛽−1𝑎 + 𝛾−1𝑎 ) = 𝑝(𝛼𝑎 + 𝛽𝑎 + 𝛾𝑎) = 𝑝 ⋅ Kl3(𝑎; 𝑝).

The 𝑘th symmetric power moments of Kl3 are integers of the form

𝑚𝑘
3(𝑝) ∶=

∑
𝑎∈𝔽×𝑝

∑
𝑖+𝑗+𝑘=𝑘

𝛼𝑖𝑎𝛽
𝑗
𝑎𝛾

𝑘
𝑎,

which can be computed using the value of elementary symmetric polynomials. For example, the
third, fourth, and sixth symmetric power moments can be computed by

𝑚3
3(𝑝) =

∑
𝑎

(𝑠1(𝑎)
3 − 2𝑠1(𝑎)𝑠2(𝑎) + 𝑝3),

𝑚4
3(𝑝) =

∑
𝑎

(𝑠1(𝑎)
4 − 3𝑠1(𝑎)

2𝑠2(𝑎) + 𝑠2(𝑎)
2 + 2𝑝3𝑠1(𝑎)),

𝑚6
3(𝑝) =

∑
𝑎

(𝑠1(𝑎)
6 − 5𝑠1(𝑎)

4𝑠2 + 6𝑠1(𝑎)
2𝑠2(𝑎)

2 − 𝑠2(𝑎)
3 + 4𝑝3𝑠1(𝑎)

3 − 6𝑝3𝑠1(𝑎)𝑠2(𝑎) + 𝑝6,

respectively. Hence, we obtain from (2.5) that

𝑎43(𝑝) = −
1

𝑝3
(𝑚4

3(𝑝) + 1 + 𝑝2 + 𝑝4)

is the trace of the middle cohomology H1
�́�𝑡,mid

(𝔾𝑚,𝔽𝑝
, Sym4Kl3). We list some numerical results

as follows.

Primes
3 5

𝑚3
3
(𝑝) −10

𝑎4
3
(𝑝) −2 −12

𝑚6
3
(𝑝) −820

A.1.2 𝑚(2,1)
3

(𝑝) and𝑚(2,2)
3

(𝑝)

By (2.10), the moment of Kl𝑉2,1
SL3

is the difference of the moment of Sym2Kl3 ⊗ ∧2Kl3 and that of
Kl3(−3). Hence, we obtain

𝑚(2,1)
3

(𝑝) =
∑
𝑎

(𝑠1(𝑎)
2𝑠2(𝑎) − 𝑠22(𝑎) − 𝑝3𝑠1(𝑎)).
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Let𝑎(2,1)
3

(𝑝) be the traces of themiddle cohomologyH1
�́�𝑡,mid

(𝔾𝑚,𝔽𝑝
, Kl(2,1)

3
), which can be computed

by

𝑎
(2,1)
3

(𝑝) = −𝑝−4(𝑚
(2,1)
3

(𝑝) + 𝑝 + 𝑝2 + 𝑝3).

As for Kl(2,2)
3

, we conclude similarly from (2.10) that the moment of Kl(2,2)
3

is

𝑚(2,2)
3

(𝑝) =
∑
𝑎

(
(𝑠1(𝑎)

2 − 𝑠2(𝑎))(𝑠2(𝑎)
2 − 𝑝3𝑠1(𝑎)) − 𝑝3𝑠1(𝑎) ⋅ 𝑠2(𝑎)

)
.

Let 𝑎(2,2)
3

(𝑝) be the traces of the middle cohomology H1
�́�𝑡,mid

(𝔾𝑚,𝔽𝑝
, Kl

(2,2)
3

). Then, we obtain

𝑎(2,2)
3

(𝑝) = −𝑝−5(𝑚(2,2)
3

(𝑝) + 𝑝2 + 𝑝3 + 2𝑝4 + 2𝑝6).

Some numerical results are as follows.

Primes
5 7 11 13 17 19 23

𝑎(2,1)
3

0 0 −4 6 2 0
𝑎(2,2)
3

6 −16 12 38 −126 20 168

Moreover, we compute the space of cuspidal new modular symbols over some finite fields 𝔽𝓁
and verify whether the prescribed traces are roots of the characteristic polynomials of 𝑇𝑝. Below
are some numerical results.

Level𝑵 weight 𝒌 Prime 𝒑 Finite field 𝔽𝓵 𝑻𝒑(𝒂𝒇(𝒑))

2 ⋅ 35 14 5 𝔽23 1
2 ⋅ 35 12 5 𝔽23 −1
2 ⋅ 35 10 5 𝔽13 5

A.2 Computation of𝑚3
4
(𝑝) and𝑚4

4
(𝑝)

A.2.1 𝑚3
4
(2)

Here, we compute the third symmetric power moment at 𝑝 = 2. Using Sagemath [38], we know
that Kl4(1; 2) = 1 and Kl4(1; 4) = 11. Let 𝛼1, … , 𝛼5 be the eigenvalues of Frob2 acting on (Kl4)1
and let 𝑠1, … , 𝑠4 be the elementary symmetric polynomials on 𝛼𝑖 . By the definition ofKl4, we have

𝑠1 =
∑

𝛼𝑖 = −Kl4(1; 2) = −1,

𝑠21 − 2𝑠2 =
∑

𝛼2𝑖 = −Kl4(1; 4) = −11.

Therefore, 𝑠1 = −1 and 𝑠2 = 6. Moreover, since detKl4 = 𝐸(−6), we have 𝑠4 =
∏

𝛼𝑖 = 𝑝6.
Noticing that 𝛼𝑖 ⋅ 𝛼 = 𝑝3, we have 𝑠3 = 𝑝3𝑠1 − 8. Then, the moments can be computed by

𝑚3
4(2) =

∑
𝑖,𝑗,𝑘

𝛼𝑖𝛼𝑗𝛼𝑘 = 𝑠31 − 2𝑠1𝑠2 + 𝑠3 = 3.
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It follows that

𝑎34(2) = −
1

𝑝4
(𝑚3

4(𝑝) + 1 + 𝑝2 + 𝑝3) = −1.

A.2.2 𝑚3
4
(𝑝) and𝑚4

4
(𝑝)

Let 𝛼1(𝑎), … , 𝛼4(𝑎) be the eigenvalues of Frob𝑝 acting on (Kl4)𝑎 for 𝑎 ∈ 𝔽×𝑝 and by 𝑠1(𝑎), … , 𝑠4(𝑎)

the elementary symmetric polynomials on 𝛼𝑖(𝑎). By the definition of Kl4, we have

𝑠1(𝑎) =
∑

𝛼𝑖(𝑎) = −Kl4(𝑎; 𝑝) and 𝑠1(𝑎)2 − 2𝑠2(𝑎) =
∑

𝛼𝑖(𝑎)
2 = −Kl4(𝑎; 𝑝

2).

Furthermore, since detKl4 = 𝐸(−6), we have 𝑠4(𝑎) =
∏

𝛼𝑖 = 𝑝6. Noticing that 𝛼𝑖(𝑎) ⋅ 𝛼𝑖(𝑎) = 𝑝3,
we have 𝑠3(𝑎) = 𝑝3𝑠2(𝑎). Then, the moments can be computed as

𝑚4
4(𝑝) =

∑
𝑎

(𝑠1(𝑎)
4 − 3𝑠1(𝑎)

2𝑠2(𝑎) + 𝑠2(𝑎)
2 + 2𝑝3𝑠1(𝑎)𝑠1(𝑎) − 𝑝6).

At last, the traces of the middle cohomologyH1
�́�𝑡,mid

(𝔾𝑚,𝔽𝑝
, Sym4Kl4) are

𝑎44(𝑝) = −
1

𝑝4
(𝑚4

4(𝑝) + 1 + 𝑝2 + 𝑝3 + 𝑝4 + 2𝑝6).

Some numerical results are listed below.

Primes
2 3 7

𝑎3
4
(𝑝) −1

𝑎4
4
(𝑝) −26 −22

Similar to the end of Section A.1.2, we list some numerical results when 𝑁 ⋅ 𝑘2 ⩾ 40 000.

Level𝑵 weight 𝒌 Prime 𝒑 Finite field 𝔽𝓵 𝑻𝒑(𝒂𝒇(𝒑))

28 ⋅ 5 14 7 𝔽11 3
28 ⋅ 5 12 3 𝔽13 10
28 ⋅ 5 10 7 𝔽11 3
28 ⋅ 5 8 7 𝔽11 5
28 ⋅ 5 6 7 𝔽11 4
27 ⋅ 5 14 3 𝔽17 8
27 ⋅ 5 12 7 𝔽17 8
27 ⋅ 5 10 3 𝔽11 5
27 ⋅ 5 8 7 𝔽11 3
26 ⋅ 5 14 3 𝔽17 3
26 ⋅ 5 12 3 𝔽29 2
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A.3 Computation of𝑚3
5(𝑝)

Let 𝛼1(𝑎), … , 𝛼5(𝑎) be the eigenvalues of Frob𝑝 acting on (Kl5)𝑎 for 𝑎 ∈ 𝔽×𝑝 and by 𝑠1(𝑎), … , 𝑠5(𝑎)

the elementary symmetric polynomials on 𝛼𝑖(𝑎). By the definition of Kl5, we have

𝑠1(𝑎) =
∑

𝛼𝑖(𝑎) = Kl5(𝑎; 𝑝) and 𝑠1(𝑎)2 − 2𝑠2(𝑎) =
∑

𝛼𝑖(𝑎)
2 = Kl5(𝑎; 𝑝

2).

Furthermore, since detKl5 = 𝐸(−10), we have 𝑠5(𝑎) =
∏

𝛼𝑖 = 𝑝10. Because𝛼𝑖(𝑎) ⋅ 𝛼𝑖(𝑎) = 𝑝4, we
have 𝑠3(𝑎) = 𝑝2𝑠2(𝑎) and 𝑠4 = 𝑝6𝑠1(𝑎). Then, the moments can be calculated as

𝑚3
5(𝑝) =

∑
𝑎∈𝔽×𝑝

∑
𝑖⩽𝑗⩽𝑘

𝛼𝑖(𝑎)𝛼𝑗(𝑎)𝛼𝑘(𝑎) =
∑
𝑎

𝑠1(𝑎)
3 − 2𝑠1(𝑎)𝑠2(𝑎) + 3𝑠3(𝑎).

At last, the traces of middle cohomologyH1
�́�𝑡,mid

(𝔾𝑚,𝔽𝑝
, Sym3Kl5) are

𝑎35(𝑝) = −
1

𝑝5
(𝑚3

5(𝑝) + 1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝6).

The values of moments and Frobenius traces at 𝑝 = 2, 5 are listed below.

Primes
2 5

𝑚3
5(𝑝) −61 3901

𝑎35(𝑝) −1 −4
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