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1 | INTRODUCTION

The Kloosterman sums are exponential sums over finite fields, defined for each power of prime
numbers g = p" and each a € F, by

KL (a;q) := Z exp<27ri/p-Tr[Fq/Fp<x+ %))’

X
xe[Fq

where Tr[Fq /F, is the trace from [, to . These sums can be regarded as finite field versions of
Bessel functions,

Be(z) := él exp <x+ %)d?x

which satisfy the Bessel differential equations (z9,)?> — z = 0.

When a # 0, Weil showed in [39] that Kl,(a;q) = —(a, + 8,) for some algebraic numbers
Ay, B, of complex norm q'/2. For k > 1, the kth symmetric power moments of Kloosterman sums
are integers m’zc(q) defined by

k
my(@ = Y, Y alpi.

a€l, i=0

To package the information of these moments as g varies across all powers of p, we consider the

generating series
k(A"
my(p") _,
—— 7",
ol 3™

rx1

which serves as the analog of the Hasse-Weil zeta function for varieties over finite fields.

We define the (partial) L-function attached to kth symmetric power moments of Kloosterman
sheaves, denoted by Li(s), by considering the Euler product, where the local factors at p are made
from the aforementioned generating series. These L-functions are a priori defined on the domain
{seC|Re(s)>1+ %} by construction and the work of Fu-Wan [17]. Hence, it is natural to
question whether this L-function can be extended meromorphically to the complex plane and
whether it satisfies a functional equation.

Example 1.1. The cases for k < 8 have been proven indirectly by demonstrating that the
expressions of moments of Kloosterman sums consist of polynomials in p, Dirichlet characters,
and Fourier coefficients of modular forms (holomorphic cuspidal Hecke eigenforms).

* When k < 4, the moments m’z‘( p) can be computed explicitly. We find that the L-function is
trivial if k = 1, 2, or 4, and is the Dirichlet L-function L(s, (;)) ifk = 3.

* When k = 5, there exists a holomorphic cuspidal Hecke eigenform f € S;(T,(15), (1‘—5)) such
that

ap(p) = —é(mi(p) +1)
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if p 4 15, proved by Peters et al. [31] and Livné [28].
* When k = 6, there exists a holomorphic cuspidal Heck eigenform f € S,(I'(6)) such that

a(p) = —%(mg(p) +1)

if p + 6, proved by Hulek et al. [22].
* When k = 7, there exists a holomorphic cuspidal Hecke eigenform f* € S5(I'((525), ¢ ), where
€ = (57) - €5 and €5 is a quartic character with conductor 5, such that

ap(p)e;(p)~ —p* = —é(%)(mg(p) +1)

for p > 7, conjectured by Evans [12] and proved by Yun [41].
* When k = 8, there exists a holomorphic cuspidal Hecke eigenform f € S¢(I,(6)), such that

1
as(p) = —?(mg(p) + 1)
for p } 6, conjectured by Evans [13] and proved by Yun and Vincent [41].
From the examples discussed, we deduce that Li(s) can be extended meromorphically to C
and satisfies a functional equation when k < 8. For general k, Broadhurst and Roberts predicted
precise formulas for the functional equations of Li(s) in [6, 7]. And then, Fresin-Sabbah-Yu

established the following theorem.

Theorem 1.2 (Fresin—-Sabbah-Yu). The partial L-function Li (s) can be extended meromorphically
to the complex plane. Furthermore, we can complete Li (s) to a holomorphic function Ay (s) such that

N (8) = g A (k +2 —5),
where ¢, € {1} and ¢, is1ifk is odd.
The primary object of this article is to extend the theorem above to L-functions attached to
moments (beyond symmetric power moments) of Kloosterman sums in multiple variables.
1.1 | Kloosterman sheaves

The Kloosterman sums in 7 variables are the exponential sums over finite fields, defined for each
power of prime numbers g = p” and each a € [FZ;, by
a
xl cee xn :

By fixing a prime number # # p and an embedding (: Q, — C, Deligne constructed lisse
¢-adic sheaves Kl, ., over G, F, = A|1F \{0}, which are pure of weight n and of rank n +1 in
’ q

27i
Kl 1(a;9) := Z eXp<7 ‘Tr[Fq/Fp <x1 + ot x, +
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[9, Sommes. Trig. Thm. 7.8]. Moreover, for every a € [sz< = Gm’[Fq([Fq) and every geometric point a
localized at a, we have

toTr(Froby, (Kl,.;1)g) = (-1)"Kl, 11 (a; ).

Hence, the Z-adic sheaves Kl,,,; can be regarded as the sheaf version of the Kloosterman sums,
and we call them Kloosterman sheaves.

In their work [20], Heinloth, Ngo, and Yun constructed a larger class of Z-adic sheaves, called
Kloosterman sheaves for reductive groups, using methods from the geometric Langlands program.
For each split reductive group G, they construct a tensor functor

Kl; : Rep(G) — Locg . 1.3)
mtq

from the category of finite-dimensional representations of G with coefficients in Q,(u,) to the
category of lisse #-adic sheaves on G - Our primary interest lies in the case where G = SL, ;.

In particular, by selecting V' as the standard representation Std of SL,, , ; and Sym*Std, respectively,
we obtain the classical Kloosterman sheaf K1, +1(g) and its symmetric power Sym*Kl,, +1(%).
Let V =V, be the representation of the highest weight 4 = (4,,...,4,) of SL,,;. We denote
Al =X, 4 and Klﬁ 4 as the sheaf Klg; (VA)(—%M). We have an explicit description of Klfl 41
using Weyl’s construction, detained in Section 2.1. In what follows, we formulate the analogs of

moments and L-functions for Klfl 1

A

Definition 1.4. For each 4, the moment of the Kloosterman sheaf K1, |

is defined as the integer
mﬁﬂ(q) =— Z Tr(Frobq, (KlﬁH)E).
ae[FfI<

By the Grothendieck trace formula [9, Rapport. Thm. 3.1] and Theorem 4.5, the generating
series

m!_(p")
ZA,n+1,p;T) := exp(Z M -T’>

rx1 r

is a rational function

2 _q)it+l

g det (1 — Frob,T | HL (Gmﬁp’ KA, )) "

In order to define the partial L-function associated with Klfl +1 as an Euler product, it is not
advisable to directly use Z(1,n + 1, p; T) as the local factor at p, because the complex norms of
roots and poles of Z(1,n + 1, p; T) lie within the set {p~/2 | 0 < i < n|A| + 1}. Motivated by the
work of Fu and Wan [17, 18] for the sheaves Sym*Kl,,, ,, we remove some “trivial factors” from
Z(A,n+1, p;T). By the long exact sequence (2.5) and the main theorem of Weil II [10, 3.3.1], we
need to discard the contributions from the invariants and coinvariants of the Kloosterman sheaves
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at 0 and oo. Hence, the ideal candidate for the local factors at p is

M(A,n+1,p;T) :=det <1 — Frob, T | Hét mid(GmF ’Klﬁﬂ))’
; Fp

where

forget support
1 A _ 1 _ y! 1 _ s
Hét,mid <Gmfp ’ Kln+1 ) - lm<Hét,c (Gm,[Fp ’ K1n+1 ) Hét <Gm,[Fp ’ Kln+1 ) )

A
n+1°

is the middle #-adic cohomology of K1

Definition 1.5. The partial L-function L5(1, n + 1;s) attached to Klﬁ 41 is defined as the Euler
product

n+1s):= [ M@n+1,pp™"
sES(A,n+1)

Here, the set S(4, n + 1) is a finite set of primes, only depending on 4 and n + 1 (see Theorem 4.5)
such that the degree of M(4,n + 1, p; T) remains constant for p ¢ S(4,n + 1).

The L-function is a priori a holomorphic function on the domain {s € C | Re(s) > 1 + %},

because the complex norms of the roots of M(1,n + 1, p; T) are p~ ~ 2 . However, the definition

alone does not provide further information. We can ask, as before, whether the partial L-function
L%(A,n + 1;s) can be meromorphically extended to the entire complex plane and satisfies a
functional equation.

1.2 | Main results

We introduce our main results here. For simplicity, when A = (k, 0, ..., 0), we write L5(k, n + 1;5)
instead of LS((k, 0, ...,0), n + 1;5).

Theorem 1.6. For each value of (n + 1, k) given in the table below,

n+1 k

3 1,2,3,4,5,6,7,8,9
5 1,2,3,4
4,7,8,10,11,13 1,2,3

the partial L-function L®(k, n + 1; s) extends meromorphically to the complex plane. Furthermore, it
can be completed into a holomorphic function A(k,n + 1; s) satisfying a functional equation

Alk,n+1;8) = +Ak,n+ 1;nk + 2 — ).

In Example 1.1, we see that there are some relations between Fourier coefficients of certain
explicitly determined modular forms and symmetric power moments of Kloosterman sums. Yun
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proposed Conjectures of Evans type in [41], predicting new relations for Kloosterman sheaves for
reductive groups. For simplicity, throughout this article, a modular form will refer to a normalized
holomorphic cuspidal Hecke eigenform.

These relations imply that the L-functions of these sheaves are L-functions of the corresponding
modular forms.

Theorem 1.7. The L-functions of the Kloosterman sheaves Sym*Kl,, Sym>Kl,, Sym*Kl,, Sym>KI.,
K1(32,1), and Kl(32’2) arise from modular forms. Moreover, we determine explicitly these modular forms
and the relations between their Fourier coefficients and moments of Kloosterman sheaves.

The information of these modular forms f € S;(T,(N), €) are summarized in the following table.

Sheaves N k € Labels in LMFDB [37]
Sym*Kl, 14 4 1 14.4.ab

Sym’Kl, 15 3 (E) 153.a.b.

Sym*Kl, 10 6 1 10.6.a.a.

Sym®Kl 33 4 1 33.4.a.b

K> 14 2 1 14.2.a.a

K1%? 6 4 1 6.4.2.2

Alongside establishing the main theorems, we have also successfully proved several new results
about the Kloosterman Sheaves. For example, we calculated the local monodromy group of Kl,
at co when p = 3 in Theorem 2.24. When n > 3, the local monodromy group of K1, ; at co when
p | n + 1is still unknown.

Furthermore, we observe that the modular forms linked to the moments of the sheaves Sym°®Kl,
and Klgz,z) are identical, with label 6.4.a.a in LMFDB, thanks to Theorem 1.7 and [22]. In par-
ticular, we deduce an identity between moments of Sym°®Kl, and K1(32’2) in (5.18). This prompts
us to ask whether there exists a geometric explanation for this phenomenon, as conjectured in

Conjecture 5.19.

1.3 | Idea of the proof

Our strategy in proving Theorem 1.6 and Theorem 1.7 is as follows. We begin with construct-
ing families of Galois representations of geometric origin, whose L-functions precisely match
L(A,n + 1;5), extending the construction in [16, (3.1)]. Then, we subtract geometric information
from these families of Galois representations to be able to apply some theorems from the auto-
morphic side. Once we establish that these Galois representations are potentially automorphic,
the L-functions L(4, n + 1; s) extend meromorphically to C and satisfy functional equations as a
result. At last, for Theorem 1.7, one needs extra numerical results to locate the modular forms
in LMFDB.

1.3.1 | Galois representations arising from geometry

Drawing inspiration from the analogy between Kloosterman sums and Bessel functions, Fresan,
Sabbah, and Yu considered the Kloosterman connection, which is the rank n + 1 connection
on G, ¢ corresponding to the Bessel differential equation (z8,)"*! — z = 0. They interpret the
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middle de Rham cohomology of the connection Sym*Kl,,.,, that is, the image of the forget
supports morphism from the cohomology with compact support to the usual cohomology, as the
de Rham realization of an exponential motive over Q in the sense of [15]. This exponential motive
is classical, meaning that it is isomorphic to a Nori motive MI; 4 over Q.

This motive is isomorphic to a subquotient of H?k_l(]C)(—l), where K is the hyper-
surface defined by the kth iterated Thom-Sebastiani sum of the Laurent polynomial
Ont1 = Z;’Zl yj+1/ H;lzl j» which is the Laurent polynomial

n+1 Z(Zyl,j H 1yj) (1.8)
Jj=

on the torus Gﬁqk. We extend their method to construct a motive Mﬁ 41 for each 4 € N" in
Definition 3.3, using the Weyl construction. When 4 = (k, 0, ..., 0), we recover the motive M’V‘l 1
constructed by Fresan-Sabbah-Yu.

For each motive M* SRR L ¢-adic realizations (Mﬁ +1) ¢ are continuous #Z-adic representations
of Gal(Q/Q) with coefficients in Q,, isomorphic to subquotients of HZ[lﬁl_l(lC—, Q,)(—1). By

Theorem 4.5, we demonstrate that {(Mn +1)f}f form a compatible family of Galois representations,
with (Mn +1)¢ being unramified as a representation of Gal(@P /@,) for p_rimes p outside a finite
set of primes, S(1, n + 1). Moreover, there exists an isomorphism of Gal(Q,/Q,)-representations

( n+1) [gp Hy, m1d< mF,’ KlﬁH) (1.9)

Subsequently, we observe that the partial L-functions of this family of #-adic Galois representa-
tions coincide with the L-functions LS(4, n + 1;s) of Klﬁ +1- We refer to Mft 4188 the motive attached
to the sheaf Klﬁ 41

To investigate these compatible families of Galois representations, as indicated by (1.9), it is
necessary to study the cohomologies of Kloosterman sheaves. However, the challenges posed by
Klfl 4 are notably more intricate compared to the relatively straightforward scenarios encountered
with Sym*Kl, in [16, 41]. Notably, we employ complicated combinatorial formulas to describe
K14 +1> Which all become simple for Sym*Kl, (see Proposition 3.8, for example). Also, an annoy-
ing new feature of K1* 141 is that their zeroth cohomology might be nonzero, contrary to the
case of Sym*Kl, where the zeroth cohomology always vanishes. This phenomenon makes the
proof of Theorem 3.11 and Theorem 4.15 more technical, necessitating a degree of compromise by
introducing certain technical restrictions.

1.3.2 | Potential automorphy

We prove Theorem 1.6 by applying a theorem by Patrikis-Taylor [30] to {(M/, +1),o}f. We must verify
a critical condition known as regularity to employ this theorem. Through the p-adic comparison
theorem, this condition amounts to saying that the Hodge numbers of the de Rham realization
of M# "+, are either 0 or 1. Relying on the result in the author’s previous paper [32] (see also
Corollary 3.6), the regularity holds for cases presented in Theorem 1.6.

Notice that the table of specific values of (n+ 1,k) in Theorem 1.6 is chosen so that

the Hodge numbers of M’; 4+ are regular, see Corollary 3.6. Recent developments in (potential)
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automorphy, such as the work of Boxer—Calegari-Gee-Pilloni [5], offer promising avenues for fur-
ther

exploration. These advancements may potentially extend the results of Theorem 1.6 to cases
beyond the current bounds on Hodge numbers.

1.3.3 | Conjectures of Evans type

Let M be a motive attached to one of the sheaves in Theorem 1.7. To prove the claimed conjectures
of Evans type, it suffices to show that the Z-adic realization of M is modular, meaning that it is
isomorphic to py ,(h) for some modular forms f and some integer h. Here, py , represents the
two-dimensional Galois representation of Gal(Q/Q) attached to f, constructed in [8, 11]. To prove
this, we use an argument similar to that in [41, Thm. 4.6.1] to show the modularity, which is
originally due to Serre [34, §4.8] and can also be found in [25, Thm. 1.4.3]. The key ingredient of
this argument is Serre’s modularity conjecture.

After establishing modularity, the remaining task is to determine the modular forms’ informa-
tion as explicitly as possible. We can begin by extracting information from the geometric properties
of M. In Section 4.1, we study the compatible family M, of Galois representations and analyze its
conductor N. This provides us with some information about the size and prime divisors of the
modular form’s level. Additionally, we use the calculation of Hodge numbers of the de Rham
realization My from [32] to determine the weight of the modular form.

However, due to a lack of information at some “bad” primes or missing calculation of Hodge
numbers, we only get partial information on weights and the levels of those modular forms. We
turn to numerical results of traces of Frobenius for assistance in obtaining the Fourier coeffi-
cients of the corresponding modular form using Sagemath [38]. Then, we are able to determine
the actual levels of modular forms in Proposition 5.6 and Proposition 5.11, and the actual weights
in Proposition 5.9 and Proposition 5.16. In particular, we get some new results on Hodge numbers
that cannot be obtained using methods from [32].

At last, we utilize the information from both geometry and computation to pinpoint the
modular form in the LMFDB database.

1.4 | Organization of the article

In Section 2, we investigate the properties of Kloosterman sheaves, primarily focusing on those
appearing in Theorems 1.6 and 1.7, including their local structures at 0 and oo, the dimension
formulas for their #-adic cohomologies. In Section 3, we construct the motives attached to
Kloosterman sheaves and explore properties of their de Rham realizations, #-adic realizations,
and other realizations in characteristic p > 0. In Section 4, we first investigate the ramification
properties of the Galois representations (Mfl +1)¢ as detailed in Theorems 4.5 and 4.15. Then, we
prove Theorem 1.6. In Section 5, we demonstrate Theorem 1.7 by showing the modularity for
each sheaf case by case in Propositions 5.5, 5.6, 5.9, 5.11, 5.14, and 5.16. In Section A, we outline
the process of calculating moments of Kloosterman sheaves.

2 | PROPERTIES OF KLOOSTERMAN SHEAVES

In this section, we primarily focus on Kloosterman sheaves appearing in Theorems 1.6 and 1.7.
After recalling some preliminaries about Weyl’s construction and #-adic sheaves, we give
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Kloosterman sheaves geometrical descriptions in Proposition 2.13. Then, we describe their local
structures at 0 and oo in Section 2.4 and Section 2.5. At last, we give dimension formulas of the
¢-adic cohomologies of Kloosterman sheaves in Section 2.6.

2.1 | Weyl’s construction

We recall some preliminaries from [19, §6, §15 & §17]. A partition of an integer k is a sequence of
nonnegative integers of the form u := (uy, 4y, ..., 4,,,) such that p; > py -+ >, and Y, w; = k.
For a partition of k, we can associate a Young diagram, such that y; are the lengths of the
ith rows. For example, the Young diagram of the partition (3,2,1) is shown in the following
diagram.

23]

1
4
6

For a partition u of k, we define two elements a, and b, in the group ring Z[S;] as
follows. First, we label each block in the Young diagram by indexes in {1,...,k}. We take

P, = {o € Sy | o preserves each row} and Q= {t € Sy | T preserves each column}. Let

sign : S, — {+1} be the sign character of S;.. Then, we define

a, = Z o, b,:= Z sign(7)t

CIEPM TEQ#
and ¢, = a, - b, in the group ring Z[S;].

Let K be a field of characteristic 0 and V = K"*! be the standard representation of SL,,,;. The
group Sy acts on the tensor product V& by

o ® ® Uy = Ucf(l) ® ® Uo(k)'

Then, we have the endofunctor S, of the category of finite-dimensional representations of SL,, ,;
defined by S uV 1= Y&k . Cy- For convenience, we also write

(VOkyPxQuisien . _ @k ¢ @1)

Let A =(4;,..,4,) be a sequence of nonnegative integers. Let V be the standard

representation K*! equipped with the natural action of SL,,,; and V; be the unique irreducible
subrepresentation of the highest weight }; 4,(L; + --- + L;) of

Sym"V @ Sym™2 A2V @ - ® Sym* A" V.

In the case of SL;, the representation with the highest weight 4,L; + 4,(L, + L,) can be
described as

a4
ker(SymMV @ Sym”™ A2 V —= SymM 1V @ Symb ! A2 V), (2.2)
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where 77, ; sendsv; @ - @ vy Qw; @ -+ @ wy, to

1
A SZ < Ug(1)s We(1) > Vo(2) " Vo) @ Wr(2) "+ Wr(y),
ge

N ,TGSAZ

where < -,- > V X A2V — K is the natural pairing.
In general, we can construct the representation V; using Schur functors as follows. Let

n n
u(d) ;= <2 A Z/lj,...,/ln>,
=1 j=2

Ga := Puay X Quary

(2.3)

By applying S, to V?W, the resulting representation is nothing but V;. More precisely, we
have V, = (V®1)G1xsign For example, if A = (k, 0, ...,0), then P, = S, and Q, is trivial. Hence,
S; (V&) = (V&S = symhv.

2.2 | Some generalities on 7-adic sheaves

Let p # ¢ be two prime numbers, g a power of p, t: Q, < C an embedding. We denote by E
either the algebraic closure Q, of Q,, or a finite extension of Q, inside Q,. By an ¢-adic sheaf on
a connected separated Noetherian scheme X over [Fq, we mean a constructible E-sheaf on X.

221 | Cohomologies of 7-adic sheaves on curves

Let C be a geometrically connected smooth projective curve over F,. The Z-adic cohomologies
H‘e z(C_q’ F) of an ¢-adic sheaf # on C are finite-dimensional E-vector spaces equipped with
Frobenius actions.

Suppose that F is a lisse Z-adic sheaf on an affine open subset U of C. We denote by pg the
corresponding continuous #-adic representation of ﬂf‘(U, 1y ), and by Ggeom the geometric mon-
odromy group of #, that is, the Zariski closure of the image of nft (Uﬁq ,7y) in GL(F) under pg.
Then,

H2(U- ,%)=H° (U-,%)=0,
(43 [Fq q

ét,c

HS[(UF(]’ g) = (g IEU )Ggeom, and H?[,C(Uﬁq’ 9/7) = (g IﬁU )Ggeom(_l)’

where (# |,—]U )Ceeom and (F |,—]U )chom are the invariants and the coinvariants of # under the action
of G

geom*

2.2.2 | The Grothendieck-Ogg-Shafarevich formula

For each closed point x € |C|, we denote the localization (resp. strict localization) of C at x (resp.
X) by Cy, (resp. C(x). The special points and generic points of C,) and C, are denoted by s, 7,
and sy, 95, respectively.
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Let & be an ¢-adic sheaf on C that is lisse on an open subset U C C. We denote
tk(F) = tk(F5), 1k (F) = rk(?ﬁ;x), and Sw (F) = Sw(F/v‘ﬁx). Then, the Euler characteristic

2
X(Uﬁq’ Fly) = Z(—l)“’l dim Hi’t(qu’ Fly)
i=0

can be computed by the Grothendieck-Ogg-Shafarevich formula

AUz Fly)=|2-29~ Y deg)|-tk(F)~ Y, deg(x) -Sw(F),  (24)
xe|C\U| x€|C\U|

see [2, X. Théoréme 7.1] or [26, (2.2)]. The sum on the right-hand side is a finite sum because
Sw,(#) = 0 whenever x € U.

2.23 | The middle 7-adic cohomology

Let C be a curve as above, j: U < C an open immersion, and & an ¢-adic cohomology on U.
The middle ¢-adic cohomology of & is the image of the forgetting support morphism

G )—>H(C F)s

etc

denoted by He ¢ mi d(C— F), which is identified with the #-adic cohomology of the (nonderived)

direct image j, 7 Accordmg to [24, 2.0,7], we have a long exact sequence

ét,c

0= (F ;)% > P (Fl)7 ~ H Uz, F)

x€|C\U|, x over x

SH,Us . F) > @D Tl = (F Iy, (D =0,

geom
x€|C\U|, X over x

(2.5)

where 75 are the generic point of the strict henselization of C at X, the groups I5 are the inertia
groups at x, (F I5. )= are the invariants of Iy, and (% I5. ) I are the coinvariants of I5.

Assume that & is pure of weight w. By the main theorem of Weil II [10, 3.3.1] and (2.5), we
conclude that

1
et mld(U 9) = grw+1 ét, c(U_ ’ 'f) - gI.w+1Hét(U_q’ '9:)

In particular, the dimension of the middle #-adic cohomology is given by

dimH!, (Ur ,%) - D dim(F |7 )% + dim  Ceeom, (2.6)
q X

ét,c
x€|C\U|, X over x

2.3 | Kloosterman sheaves

Let p and ¢ be two distinct prime numbers and F, be the finite field with ¢ = p" elements. Let

¢, be a primitive pth root of unity ¢, in Q,, and we denote by E = Q,(¢ p)- We fix a nontrivial
additive character ¢, : F, — E*, and denote by §, the character §, oTr[Fq [Fy The Artin-Schreier
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sheaf fZ¢ is a lisse Z-adic sheaf with coefficients in E on A , whose trace function is given by 9.
We denote by fflp (f) the inverse image f *SEZP of the Artin- Schreler sheafalong a regular function
f:X-> Al

Consider the following diagram

/ X‘ (2.7)

where o denotes the sum of coordinates and 7 denotes the product of coordinates. We define the
Kloosterman sheaf on Gmyr, by

Kl = Rnﬁ10*3¢q. (2.8)

Deligne showed in [9, Sommes. Trig. Thm. 7.8] that K1, is a lisse #-adic sheaf of rank n + 1,
pure of weight n, tamely ramified at 0 with a single Jordan block, and is totally wildly ramified at
oo with Swan conductor 1. Moreover, we have an isomorphism

K1Y Kl

*
n+l = by ™nt1s

where K1Y, is the dual of Kl,,,; and ¢, : G, = G, is defined by the multiplication of (—=1)"*!.
In the generahty of Kloosterman sheaves for reductive groups constructed in [20], one gets a ten-
sor functor (1.3) from the category of finite-dimensional representations of SL,,; to the category
of #-adic local systems on G,,. If we take V' as the standard representation Std of SL,,; and the
symmetric power Sym*Std, then KISLHI(V) are K1, H(g) and SyrnkKl,1 +1(%), respectively.

If we take V as the irreducible representation of the highest weight A, we get
(K 1®I/1|)G/1 1><Slgn(n|/1|)

il For simplicity, we write

. 2
Klfz+1 =Kl H(V/l)( md| ) (2.9)
Alternatively, when n = 2, we use (2.2) to conclude that the sheaf Klg; (V7 ;) is the kernel of

Sym*1Kl; ® Sym*(K1;)V(4, + 4,) » Sym" 'K, ® Sym*2 " Y(KL,)V(4, + 1, —2).  (2.10)

231 | Geometric interpretations

Now, we describe Kloosterman sheaves (2.9) geometrically. Let g : G}, . — A; be the Laurent
»p p

polynomial Y\ y; + HLy and [n+1]: Gmr, = Gmr, the (n + 1)th power map.
Lemma 2.11. We have an isomorphism of £-adic sheaves
[n+1]"Kl, 4y = FT, R"gE)lg,,

where FT% is the Deligne-Fourier transform [26].
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Proof. The proofis similar to that of [16, Prop. 2.10]. Let x4, ..., x,,,; be the coordinates of G:'n+[F1 in
P
the diagram (2.7). We perform a change of variable z = [];_, x;. Let j : G, F, Al . Then, we
’ p
can rewrite (2.8) as

Kln+1 = R(prz)!gzp (

o (S s A)[n],

where pr, is the projection from G”*! to G, ,. Let ¢ be the coordinate of the source of the map
[n + 1]. Then,

[n+1]"K],,; ~R(pr,) & o (n+1 )[n] ~ j*R(pr,), .Sflp aglnl; (2.12)

Zz]znn

where tg is seen as a function on G, X Al, pr, is the projection from G”, x A} to A}, and we
performed a change of variable y; = Xx;/t in the last isomorphism. Then, by a calculation of the
Deligne-Fourier transform, we obtain

FT%(Rg,E) ~ R(pr,),(pr;RgE ® 9¢p(xt)[1])
~ R(pr,)(R(g X id)priE ® % (1))
=~ R(pr,) R(g X id),(priE ® Zy 1)[1])
~ R(1). %y 1) [1]:

where we used the base change theorem in the second isomorphism and the projection formula
in the third isomorphism. The morphisms in the above calculation are illustrated in the following
diagram.

Gl X A}
pr, Y(‘id
G}, AL x A}
x pr, pr,
Al A}
We conclude from the above isomorphisms that [n + 1]*Kl1,, | ~ j* FTlpp RgE)[n—1]. O
Consider the torus G"WH with coordinates {x;;|1<1i< |/1|,1 <j<n} and z. Let
fie :lnl’}lﬂ - /-\1 be the Laurent polynomial ZW (ZJ VX0 T T ) and pr, be the

n|/1|+1

projection from G, t0 Gy, ,
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Similarly, consider the torus G"M I*1 with coordinates {x; jli<is |/1|, 1< j<n}andt. Welet
P
e "WH - Aé be the Laurent polynomial lei Il(z Xij+ ) and pr, be the projection
from G”WH to its G,,,

Proposition 2.13. We have the isomorphism of ¢-adic sheaves

G, ,sign"xsign"*+!
1~ (rrll
Kln+1 - <R prz*glpp(fw))

and

G, ,sign"xsign+!
£27a L n|a| ~
[n+1]"Kl,, | ~ <R prt*ff%(fw))

3

where G, = P, ;) X Q) is the group defined in (2.3), and the component (G, sign” x sign"*!)

means taking the isotypic component with respect to )’ P sign"(o)o - Y, ¢ Qi sign* (7).

Proof. By [26, (1.2.2.7)], the Deligne-Fourier transform interchanges tensor product and the
convolution. Using Lemma 2.11, we have

(In+ 117K, ) = FTy ((RgE)n — 1D 1Al
~j'FTy (R E))[n|A] - 1]
~R(Pr )Ly (1. gmian[nld] = 1]

zR(prt)lglpp(fw)[MM —1],

where ¢H1l is the Laurent polynomial in (1.8), we used the Kiinneth formula in the second
isomorphism, and we performed a change of variable x; ; = ¢ - y; ; in the last isomorphism.
Notice that the Deligne-Fourier transform preserves the action of the symmetric group S,.
However, the Kiinneth formula yields an extra sign character sign” on the right-hand side. By
taking the corresponding isotypic component on both sides, we get the second isomorphism.
As for the first isomorphism, similar to Remark 3.4, one has

1®|ﬂ| ([n+ 1] ([l’l+ 1] 1n+1)®|/1|)#n+1
(R(pr[) ¥ (flfll)> n+1[n|/1| —-1]
~R(pr, 1Ly (s ,pln1Al = 1].

At last, we add the corresponding isotypic components to both sides and get the first
isomorphism. Ol
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2.4 | The local structures of Kloosterman sheaves at 0

Let A(lo) {S9> o} be the henselization of Al at 0. The inertial group I5 acts on the generic fiber

(X1, +1)n0 By a special case of [24, 7.0.7], the generic fiber V = (K1, Jrl),70 is a tamely ramified
¢-adic representation of Gal(7,/7,) with coefficients in E = Q,(¢,). The inertia group I acts on
V unipotently by a single Jordan block. More precisely, there exists a basis {v,, vy, ..., U, } on which
the nilpotent part of the monodromy operator N : V — V(—1) and Frob, act by

Frob,(v;) = ¢"'v; and N(v;) = v;4,
fori =0,...,n (for convenience, we let v, ; = 0).

Remark 2.14. The local monodromy of Kl,,,,[,, does not depend on the characteristic p of the

base field F,. Therefore, the local monodromy of (K14 = V@l . ¢, is also independent of p.

Yo
n+1/7
Consequently, the dimension of the I5-invariants of (K14 +1) remains independent on p.

The dimension of the [5-invariants of (Sym¥ K1, +1)50 is computed in [18, Thm. 0.1].
I,
Theorem 2.15 (Fu-Wan). As a Frobq-module, the I-invariants (Symk K1, +1)ﬁ° is isomorphic to
0

nk
5]
@ E(—u)®mw),
u=0
where my (u) are numbers characterized by the generating series,
n+k

Y mwxt = T a-x)- H(1 —x)7L, (216)
u=0

i=n+1

nk
In particular, the dimension of (Sym*Kl,, +1)_ is Zu OJ my (u).

To finish, we provide the formula of dimensions of I5-invariants of Klgz’l) L, and Kl;z’z) L,

Proposition 2.17.

(1) Asa Frobq-module KI(SZ’D I')o is isomorphic to

7 6 5
Drer@Dr-HDD 5D,
i=1 i=2 i=3

. . 2, . .
and the Ig-invariants of Kl(3 2 |,,, is isomorphic to

E(-1) @ E(-2) @E(—3).
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(2) Asa Frobq-module Kl(32’2) I,;D is isomorphic to

10 9 8
D e-HEP P EHP P EHD* P E-o),
i=2 i=3 i=4

and the I-invariants of Kl(32’2)| , is isomorphic to

7

E(-2) @ E(-3) @ E(-4)®2 @E(—@.

Proof. The proof is similar to that of Theorem 2.15. We provide the proof for (1), while the proof
for (2) is similar.

The nilpotent part N of the monodromy operator on V = (K13)% can be enhanced to a
Lie algebraic representation p of sl,, such that p (? g) = N. Similarly, the nilpotent part of
the monodromy operator on (Sykal3)50 can be viewed as an sl,-representation p, with
Pk ((1) 8) = Sym¥N. By the representation theory of sl,, we can decompose (Sykal3),—;0 into irre-
2k=2ig2

2k—2iE2

k
ducible representations of sl, as EBLZJ Sym Moreover, each Sym is isomorphic

to EB?I;_[ E(—J) as a Frob,-module. As for the subspace of [3-invariants of (Sym*Kl, +1)5, it 18

k
identified with the kernel of Sym*N, which is @} jg E(-i).
Back to Kl;z’l) and we omit the Tate twists for now. Using the alternative description (2.10),

to determine the local structure of K1(32,1)’ it is sufficient to establish that of Sym2K13 ® Kl\3/. As
sl,-representations, we have isomorphisms

V =V" = Sym’E? and Sym’V = Sym*E* (P E.
By the formula,
Sym®E? @ SymPE? = Sym?+PE? @ Sym?+0 22 @ @ Symla-bI g2

from [19, Exe. 11.11], one concludes that

Sym?V @ V¥ = Sym°E* @ Sym*E? @) (Sym’E*)®?.
By removing one piece of Sym?E? from Sym?V ® V" and adding back the Tate twists, we get the
expression of Klgz’l) |, as well as that of Klgz’l) |fg O
2.5 | Thelocal structures of Kloosterman sheaves at co
2,51 | Notation

Let p, ¢, Fy, and E be as in Section 2.3. We fix a primitive (n + 1)th root of unity ¢ = ¢, ,; in Fp.
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(1) For multi-indices I € N**!,we denote by C; = Y1\ I; - {'and my = ¥ i - I;.

(2) Letuy,...,v, beabasisof E"*!. Wedenoteby g = (01 - n) € S,,,,actingon v; by ov; := v,
For a multi-index I € N"*!, we denote by vl = v(I)0 vi".
(a) Letd(k,n + 1, p) be the cardinality of the set Ag ={||Il =k, Cr= 0}.

(b) We denote by a(k, n + 1, p) the cardinality of the set of o-orbits in Ag.

(c) We denote by b(k,n + 1, p) o-orbits in Ag such that the subspace spanned by the orbit is
not zero.

(d) We denote by d(k,n + 1), a(k,n + 1), and b(k, n + 1) the generic values of d(k,n + 1, p),
a(k,n + 1, p), and b(k,n + 1, p) as p varies respectively.

Fu and Wan partly determined the local structure of Sym*KI,, 4110 [17, Thm. 2.5 & Thm. 3.1].

Theorem 2.18 (Fu-Wan).

(D) Ifp tn+1land2n|q— 1, we have an isomorphism of Frob,-modules

E@ a(k,n+1,p) 2 | n,

(Sym*K1,,,, |nm®mq)lg<n7k) =10 24 nk,
E®bkn+lp) 24 ynand2 | k.

(2) The Swan conductor of Sym*Kl,,, at oo is HLH ( (”::k) —d(k,n+1,p)).

Similar to Proposition 2.17, we study the local structures Klgz’l) and Kl(32’2) at oo.

Proposition 2.19.

(1) The Swan conductor ole(sz’l) atoois5if p #2,3,7, and is 4 if p = 2,7. The dimension of the
invariants (Kl(z’l) |- Y=isOifp#2,7, andislifp =2,7.
30 g p p
(2) The Swan conductor of K1(32’2) at oo is 8 if p # 2,3, and is 6 if p = 2. The dimension of the
invariants (Kl(z’z) |- V& islifp#2,3 andis3ifp =2.
3 nOO

Proof. The proof is similar to that of [17, Thm. 3.1]. We provide proof for the first statement and
omit the proof of the second one.

Swan conductors: According to the alternative description (2.10), it suffices to compute the Swan
conductors of Sym?Kl; ® K1\3’ and Kl;. When 3 # p, after passing to a finite extension k of F, by
Lemma 1.5 in [17], we have

BIKL31, ek () = Zy, 0 B Ly 00 B 2oy

where [3] : G,, & G,, is the cubic map and {5 is a primitive third root of unity in Fp.

Then, we can get the_local structure of [3]*(Sym/11 Kl; ® Sym/12 Kl;) as @fi 1 Sﬁp(cit) for some
N € N and some C; € F,. Since each Z ) has Swan conductor 1 if C; # 0, and has Swan
conductor 0 if C; = 0, we conclude that

SW o ([3]*(Sym™ K1; ® Sym™K1Y)) = #{i|C; # O}.
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By [24, 1.13.1], the Swan conductor of Sym*t Kl; ® Sym’lZKl\; is thus #{i|C; # 0}/3.
By direct computation, we obtain

* 2 v D3 @3 @ 3
[31°(Sym’Kl; @ K13 Iy, 0)(3) = Zy65 D Zye, Zoce

D Lo B Zoet.0 B Zye20
D Zyc0-t0 DB Zuceso-con P Zy822-¢0

D Zucer-v0 B Luct,ce-00 B Luceer-vo-

(2.20)

Depending on the value of p, the Swan conductor of Klgz’l) can be computed as follows.

* If p#2,7, the numbers C appearing in components ) in (2.20) are all nonzero. So,
S, (KI(Y) = rk(Sym’Kl; ® K1Y)/3 — SWeo(Kly) = 6—1=5.
» If p = 2, then only 6, 6¢5, and 6§’§ are 0inF,. So SWOO(KI(;’D) =4
» If p=7, we can take {; = 2. So, only 2 — {;,{;(2—¢;) and §’§(2 —¢;) are 0 in Ep. Hence,
SWo (KITD) = 4
Dimension of the invariants: Let k be a finite extension of F, containing 5. Consider the
extension k(t) = k(z)[t]/(t? — z) of k(z), and the extension k(y) = k(t)[y]/(y? —y — t) of k(t).
The Galois group H = Gal(k(y)/k(t)) is isomorphic to Fq» and is a normal subgroup of G =
Gal(k(y)/k(z)). The quotient G/H is Gal(k(t)/k(z)) = 7/27Z.
For each a € I, we denote by g, the element in H, such that g, -y = y — a. We choose an
element g € G such that g - y = ¢;. It follows that ¢ = g, = id and g & H.
Let W be a one-dimensional E-vector space and choose v, as a basis. We define an action of H
on W by

9a * Vo = Pr(=3a)v,.

By the construction, as an H-representation, W is isomorphic to Z;, (3). Then, the induced
G-representation

2
=Ind;w = @ g'W,

i=0

is identified with [3], (Zy, 30|, @k )- Let v; := g'v. The set {vy, vy, vy} form a basis of V, and the
action of H on v; is given by

Gg "V} = gi . g_iga,/,zgi ‘Uy = gi . ggga “Uy = ‘(,bk(—3§éa)vi,

and the action of g on V is given by gv; = v;,; where v; = v,
It follows that {v,v, ® VY | @ < b, 0 < a, b, ¢ < 2} form a basis of
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To calculate the dimension of (Kl(;’l) |5m)’¥, it suffices to calculate the dimension of the
G-invariant subspace

(Sym?V @ VV)°.
Letw =Y, . % pcUqUp ® V), then

Gq "W = Z ¢k(_3 (gg + gé) - gg) a)aa,b,cuavb ® U;/,

a,b,c

and
. = ® UV
g-w= %a+1,b+1,c+1VaVb c*
a,b,c

* Ifp#2,3,7, then ({§ + {é’ —¢%)isnever 0in Fp. So, there are no fixed vectors in Sym?V @ VV.
« Ifp=2,thenw =37 v, ® v, spans (Sym*V @ V).

« If p=7,then{; = 2in thiscase,andw = Y, v;v; ® v, spans (Sym*V ® V¥)°.

In conclusion, the dimension of (K1(32,1) |7_}oo Vs is 0 if p#2,3,7andislifp =2,7. O

Remark 2.21. In Section 2.6.2, we will determine the local monodromy group of Kl, at p = 3.

As a consequence, we can prove that when p = 3, the Swan conductor of Kl;z’l) at co is 5 and the

dimension of the invariants (Klgz’l) 5. )= is 0. The argument is similar to those of Proposition 2.32
and Proposition 2.33.

2.6 | The dimensions of the middle #-adic cohomology

In this subsection, our objective is to calculate the dimension of the middle #-adic cohomology of
Sym¥Kl,, ;. Proposition 2.22 provides the dimensions when p is coprime to n + 1.

However, the case that p | n 4+ 1 remains mysterious because the local monodromy group
of Kl,,,; is still unknown. When n = 1, the dimension in the case of p = 2 was computed in
[41, Cor. 4.3.5]. Following his method, we give a dimension formula when n =2 and p = 3 in
Section 2.6.2. The key idea is to use the complete classification of finite subgroups of SL; to find
the local monodromy group at co of K1,.

261 | Whengcd(p,n+1)=1

Proposition 2.22. When p is coprime to n + 1, the formula of the dimension of the middle £-adic
cohomology H: (G Sym*Kl,,,) is

5 . =
ét,mid ™~ m,kF,

. 1) alk,n+1,p) 2|n,

1 +n

n_-|-1<< n >—d(k,n+1,p)> - Zomk(u)+25(k,p)— 0 2+I’lk,
u= b(k,n+1,p) else,
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1 =2and?2|k,
where the number § (k, p) is 0 pl and2| the numbers m; (u) are defined in (2.16), and
else,
the numbers d(k,n + 1, p), a(k,n + 1, p), and b(k,n + 1, p) are defined in Section 2.5.1.

Proof. By the long exact sequence (2.5), the dimension of H! Sym*Kl, 4+1) is given by

[mld( m[F ’

H. (G, = ,Sym*Kl,,,) + dim Sykal geom

mF,’ — dim Sykal 0 —dim Sykaln e

By (2.4), dim H1 (Gm F ,SykalnH) —H° (Gm F ,SykalnH) = SW(Sykaln+1), which is
calculated in Theorem 2. 18 As for the invarlants of the global monodromy group, it is E(nk/2) if
p =2 and k is even, and 0 otherwise by combining [24, Thm. 11.1] and [18, Lem. 0.2]. Next, the
dimensions of the invariants of the inertia groups at 0 and oo are summarized in Theorem 2.15
and Theorem 2.18 if p { n + 1. At last, combining everything together, we get the dimension of
the middle cohomology. Ul

262 | Whenn=2andp=3

The classification of finite subgroups of SL,
Let {, be a primitive ninth root of unity, and we put w = ¢ g ande =¢ ‘9‘ . We define the following
matrices in SL;(C)

1 0 0 010
S=l0 o 0|, T=|0 0 1}
0 0 w? 1 00
e 0 0 ) 1 1 1
U=[0 ¢ 0| V= zlcocoz
0 0 ew WO 2w
Let
Gios =< S, T,V >C SL,,
Ga16 =< S,T,V,UVU! >C SL,,
and

G643 =<< S, T, V, U >C PGL3

We summarize the complete classification of solvable finite subgroups of SL;(C) from [29, Ch.
XII] in the following theorem.

Theorem 2.23. If G is a finite solvable subgroup of SL;(C), it is isomorphic to one of the following
groups:

(A) diagonal abelian groups,
(B) groups arising from finite subgroups of GL,,
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(C) groups generated by groups of type (A) and the element T,
(D) groups generated by groups of type (C) and a matrix of the form

Qa,b,c =

oS O Q
o o o
[=2e ]

for some roots of unity satisfying abc = —1,
(E) the group G, s,
(F) the group Gy,
(G) the group Ggyg.

The local monodromy at co when p = 3
Letj: Gpp, & [P’}3 be the inclusion. Restricting the #-adic sheaf j, KI; to 7, we have a represen-

tation p : Iz — SL4(Q,) of the inertia group at co. Recall that Kl is totally wild at co with Swan
conductor 1. We want to determine the local monodromy group of Kl; at co, namely, the finite
solvable subgroup D, = p(Iz) of SL;. The group admits a lower numbering filtration {D;} termi-
nating at Dy, such that #D, /D, is coprime to 3, D, is the 3-Sylow subgroup of D, and D;/D;
are cyclic abelian of order 3 for i > 1.

Theorem 2.24. The image of I under p is isomorphic G,ng, Whose lower numbering filtration is
given by

Dy>D; =<S,T >p>D, =+ =D, =< wl; > >{1}.

Proof. By [24, Lem. 1.19], the local monodromy group D, = p(co) satisfies the following
conditions:

(a) DyactsonV =Kl |ﬁm irreducibly,
(b) D, admits no faithful Q,-linear representation of dimension smaller than 3.

The groups of type (A) are abelian groups. As irreducible representations of abelian groups are
all one-dimensional, the group D, cannot be isomorphic to the groups of type (A) due to condi-
tion (a). The groups of type (B) are groups induced from subgroups of GL,, which admit faithful
ﬁf-linear representations of dimension 2, which violates condition (b).

We establish the following lemma to eliminate more possibilities.

Lemma 2.25. Let V = Kl; | . Then, the Swan conductor of Sym>V is 2 + dim(Sym?V)/s.

I5..
Proof. Asthe symmetric power of the standard representation of SL is irreducible, the invariants
(Sym>Kl,)!s (isomorphic to Hgt(G = ,Sym*Kl,)) are 0. By the Grothendieck-Ogg-Shafarevich

m,F3°

formula, the dimension of H;t(Gm’ﬁ3,Sym3Kl3) is equal to the Swan conductor of Sym3V =

(Sym*Kl,); , which is smaller or equal to [% -tk Sym3Kl; | = 3 because the breaks of Sym>KI,

1
are at most 3
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Considering the long exact sequence (2.5), we have

I I=
0 (Sym*kl,)™ - <Sym3Kl3 |,70) "D <Sym3Kl3 |,7w)

1 3 3
= 1Y, (6,7, Sym’KL; ) = H}, (6,7, Sym KLy ) - 0.
Recalling that the dimension of (Sym>Kl, |,70 Yo is 2 by Theorem 2.15, we deduce from the exact
sequence that
Ii
3 > dim H; ( Sym Kl3) =2+ dim Hlt mld( Sym3K13) + dim (Sym3K13 lpe. )

m[F’ m[F’

If the middle cohomology is nonzero, it is one-dimensional. By the computations in Section A.1.1,
we obtain

Tr(Frob | HY, i (6,7, Sym’KL, ) ) = —(m3(3) + 1+ p?) =

We arrive at a contradiction, as H! Sym>Kl,) is pure of weight 10. Consequently, the

ét, mld(Gm F3’
Swan conductor is 2 + dim(Sym?V)/=. O

Now assume that D is of type (C) or type (D). The representation Sym>V is the direct sum of

three subrepresentations V, = span{vo, 1 3} VvV, = span{v }# jand Vs = span{v,v,v,}.
« IfD, is of type (C), the action of D, has fixed vectors in each V;. So, dim(Sym>V)/& > 3. Applying
Lemma 2.25, we find that

< 2+ dim(Sym*V)'® = Sw(Sym?V) < 3.

* If D, is of type (D), the operators T and Q, ;. have no fixed vectors in each V;. As a result,
the subspace of invariants (Sym>V)’s has dimension 0 and V; are all totally wild. Using
Lemma 2.25, we deduce that

3
2 = Sw(Sym®V) = z Sw(V;) >3
i=1

which is again not possible.

The group D, also cannot be isomorphic to groups of type (G) because Gg4g has no normal
subgroup of order 81, that is, a normal 3-Sylow subgroup. The possible orders of normal subgroups
of Ggyug are 1,3,27,54,216, and 648 as determined by a group-theoretic computation.

Now the remaining cases are the groups of type (E) and (F).

Lemma 2.26. If D, is of type (E) or (F), the Swan conductor of Sym®V is 6.

Proof. From the above discussion, the group D, is either the group G5 or G,;¢. In both cases, the
3-Sylow subgroup D, of D, is generated by matrices S and T, of order 27. The group D, has only 3
subgroups of order 9. They are

Hl =<< S,CUI3 >, H2 =<< T, CUIS > and H3 =<< ST, CUIS >
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Since V is totally wild, the last nontrivial group Dy in the ramification filtration has no invariant
vectors, that is, VP~ = 0. Since S, ST, and T have nonzero fixed vectors vy, v; + w?v, + v and
v; + v, + U3, respectively, the group Dy, is either H; or < wl; >.

There exist nonnegative integers a, b, ¢ such that the lower numbering filtration is of the form

Dy>Dy =-+=Dgt> - >Dyyp > =Dgpy . >{1}

where D, = - Dy, isHy, Hyor Hy ifb#0,and D, = -* = Dy py. =< wlz >ifc #0.
We know that Sw(V) = 1 and Sw(Sym>V) = 2 or 3 according to (2.25). Then,

©0 . T D;
1=SW(V)=ZdlmV dimV7 _ 1 <3*a+3*9+3*9>
= [Dy : D] [Dy : D] 9
and

20r3 =Sw(Sym*v) = )’
i=1

dim Sym’V — dim Sym’v? 1 <
[DO 1]

8>x<a+6>x<9+0>x<E .
[D, : D] 3

9

If D, = G5, the only possibility is (a,b,c) = (1,0,3). If D, = G,;4, we have two possibilities
(a,b,c) = (2,0,6) or (1,4,3). In all cases, the number c is nonzero, and the last nontrivial group
Dy = Dyipyc iS < wI; > of order 3. Also, we obtain in all cases that Sw(Sym?*V) = 2.

Now consider the Swan conductor of Sym®V = Sym®(Kl,);_. In this case, Dy acts trivially on
Sym®V, so it suffices to compute dim Sym®V?1 and dim Sym®V*: (if b # 0, D, = H; for some
i €{1,2,3}). Let {v;};—, be the canonical basis of V and f; = v, + w'v; + w?v, for i =0,1,2.
Then, the actions of S and T on the basis {f;} are Sf; = f;,; and Tf; = w™'f;, where f; 1= f,.

Consider the set of multi-indexes

A={l=UpL,L)eZ ||| :=Ty+ 1 +1, =6},

on which o = (123) € S; acts. For any vector f = ¥ ;_, a;fLin Sym*V, we have

Sf = z arl!fl and Tf = Z azcoIZ_IlfL.

IeA IeA
So, if f € Sym®VPi, that is, Sf =Tf = f, the vector f is contained in the span of
{32, fL1Iy=1, =1, mod 3}. The dimension of the subspace of invariants (Sym*V)"1 is 4.

Similarly, we can compute that dim Sym®V*%i = 10 for i € {1, 2, 3}.
In conclusion, for (a, b,c) = (1,0, 3), (2,0,6), and (1,4,3), the Swan conductors are

l(24>x<1+18>:<0+0>x<§)=1<24>x<2+18>:<0+0>x<9)=1<24>x<1+18*f+0>x<5):6.
4 9) 7 3 9) 73 3 9

(W

Lemma 2.27. The dimension of (Sym®V)/® is 2if D, = G,y and is 1 if Dy = G,y6.
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Proof. Let D, = p(I,) be either G,,g or G,;4, Which is a normal subgroup of G = G,;40r G = Ggyug,
respectively. Let a € G /D, be the class of an element a € G, then

— ky=y _ L k
Tr(a | (Sym*V)'®) = D, Z Tr(g | Sym V). (2.28)
g€a-Dy
In particular, if we let a = 1, we get
Y dim(sym*vysxt = 25 -, (2.29)
#D, 9€D, g,V(x) ’

where P, (x) =det(x-g—1|V) is the characteristic polynomial of g. This can be easily
computed by Sagemath " [38]. Therefore, we deduce

1—x3+x0 4+ x12— x5 4 x18
P(x)=-— if Dy = G1og;
x) (=1 +x3)3(1 + x3)2(1 + x5) 07 08
1—x3+x% — x5+ x18

(=14 x3)3(1 4 x3)%(1 + x°)

(2.30)
ﬁ(x) = —

In particular, their coefficients of t® are 2 and 1, respectively. O

By Section A.1.1, we have

Tr(Frob | 1}, (6,7, Sym°Kl; ) ) = —820.

m[F’

Combining Theorem 2.15 and [24, Thm. 7.0.7], we deduce that
Tr(Frob | (Sym6K13)15> =1+ p*+ p*+ p° = 820.
Using the long exact sequence (2.5), we conclude that

Tr(Frob 1), ( Sym6K13)> = —Tr(Frob | (Sym6K13)I§), (2.31)

m[F’

and

dim H!

temia (G, SYMPKL ) = 2 = dim (Sym®Kl,)'=

If Dy = G4, then both dim(Sym°Kl;)/= and the middle cohomology are one-dimensional.
However, by (2.31), since (Sym°Kl;)' is pure of weight 12 and H] cmidCmF,» Sym°Kl,) is pure
of weight 13, we get a contradiction.

In conclusion, the only possibility is Dy = G;yg. The ramification filtration of D, is given in
terms of the triple (1,0,3) in the proof of Lemma 2.26. O

The code can be found on my web page.
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The dimension of the middle cohomology

Proposition 2.32. When p = 3, the Swan conductor of the action of Iz on (Sym*KI;) l,,, is given

by
<k;—2> 34k,
<<k+2> _d(k,3,3)+2) 30k
2 3

Proof. Recall that we denote V' =Kl; |, .If 3 { k, then there is no fixed vector of Sym*V under
the action of the group < wI; >. So, the Swan conductor can be expressed as

Swan_ (Sym*Kl,) =

B NN

i dim Sym*V — 0 _ dim Sym*V 2 3 1 <k + 2)
[D, : D;] 3 [Dy 2 )

=~ :D;] 3
If 3 | k, the situation is similar to the case where k = 6. In this case, D, =< wI; > acts trivially
on SymV. The dimension of Sym*V"1 is computed in terms of invariant vectors under the
action of S and T. We again let {v;};_, ; , be the canonical basis of V and f; = v, + w'v; + w?v, for
i=0,1,2. If Sf=Tf=f, the vector f 1is contained in the span of the set
{21.2:0 foL|Iy =1, =1, mod 3}. The dimension of the invariants of S and T is exactly the
number 46332 4 1 _ d(k33)+2
3 3
the Swan conductor is given by

, where d(k, 3, 3) is introduced in Section 2.5.1. In conclusion,

(o)

z dim SymkV —dim SymkVDi _1((k+2) _ d(k,3,3)+2
[D, : D;] 4 2 3 '

i=1

Proposition 2.33. The invariants of the inertia group are given by
(Sym V)& = Q, (k)P Px @ Lo(—k)D PP,

where 0 is an unramified character that sends Frobenius to —1, and p; and p;, are the kth coefficients
of the generating series P(x) and P(x) from (2.30). In particular, the dimension of (Sym*V )= is p,.

Proof. Let ¢ be a lifting of the image of Frob_, in GL; and ¢, = %c;b in SL;. Since ¢ normalizes
D, = Gy, it is in the normalizer of G4 in SL;, that is, G,;4. By direct computation, we find that

—_1 =
Gy16/D; is the quaternion group Qg and D,/D; is a cyclic group. Notice that ¢, g¢; = g3 for
g € Qg, which implies that ¢; ¢ D,. In (2.28) we let a = ¢,. Then, we obtain

1 —1
108 &4 P,y (x)

QM) 1= Y\ Tr(y | (Sym*'V)'=)x* =
s=0

As ¢, & G, and G,y = G1pg U ¢, G1pg, the series Q(x) is nothing but

-1+ x> — x°
(=1 + x3)(1 + x6)

2P(x) — P(x) =
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Let p, and P, be the kth coefficient of P(x) and P(x), respectively.

Notice that ¢7 € Gyog, because [Gy4 : Gyg] = 2. Thus, the eigenvalues of ¢, acting on
(Sym*V)/s are +1. Assume that the dimensions of eigenspaces of 1 and —1 are 1, and 4_,
respectively. Then, 1; + A_; = dim(Sym*V)/s and 1, — A_; = 2P} — p;. Therefore, we deduce
the desired decomposition in Proposition 2.33. 1

Corollary 2.34. When p = 3, the dimensions of the moments are given by

(k+2) Lk+2 3 + k;

((k;rl) _ d(k,33,3)+2) - L’%ZJ -pe 3k

dim Hlt (e Sym*Kl;) =

m[F’

Bl Wi

3 | MOTIVES ATTACHED TO KLOOSTERMAN MOMENTS

In this section, we aim to construct motives attached to moments of Kloosterman sheaves. Our
approach generalizes the construction presented in [16] by the Weyl construction. Next, we inves-
tigate their de Rham realizations, Z-adic realizations, and other realizations in characteristic
p>0.

3.1 | The construction of motives

Let n be an integer, V; the irreducible representation of the highest weight ., 4;(L; + --- + L;),

and £ C G”W the hypersurface defined by the equation

4]

Z<2x”+ﬂ x”>=0. (3.1)

i=1

The group S;; X 11 acts on K by (0 X ) - x; j 1= f4 - X5 j- By a slight abuse of notation, we
denote P; and Q; as the groups P,;y and Q,; from Section 2.1, and put G, = Py X Q;. Let
Xn : sign" x sign*! be the character of G, and for each representation V of S))» we denote the
isotypic component with respect to

€ Z sign(o)"o - Z sign(r)"*1r (3.2)

#G/l o€EP, TEQ,

by VGi:Xn, Moreover, if a finite group H acts on V and commutes with SI Al then we denote the
isotypic component (VCa-2n)H as VOt Xn

Definition 3.3. The motives attached to moments of Klfl 4+, are the Nori motives over Q with
rational coefficients, of the form

A w |/1| 1 G
My o= 8 He H (o) e dn(—-1),

where W, is the (motivic) weight filtration [21, Thm. 10.2.5], and the exponent (G, X t,;1, X»)
means taking the isotypic component with respect to (3.2) and the action of u,,, ; described above.
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Remark 3.4. The action of {,,,; € y,,,; on K is not an automorphism defined over Q (only defined
over K = Q(¢,,,1)). But taking the invariants of u,,; on N := grnWMlHHZ"/”_l(lc)Ga,Xn(—1) still
gives rise to a Nori motive over Q. In fact, one can see the Nori motive N as a Q-vector space
together with an action of the motivic Galois group G,,,(Q). We restrict N to a Nori motive Ny
over K, that is, a @-vector space with an action of the motivic Galois group G,,,;(K). Then one can

consider a Nori motive over K
N#n+1 = im(Ny — Ng
1= im( ),

where ¢ = # de Yo ¢. One can check that N#n+1 is stable under the action of Gal(K/Q). By

n+1
[21, Thm. 9.1.16], the motive N#»+1 comes from a Nori motive over Q.

When the representation V), is the kth symmetric power of the standard representation of
SL, 41, thatis, Vg o ), we recover the motive M’r‘l 1 constructed in [16, (3.1)]. For simplicity, we

use M instead of M%%?) in this situation.
n+1 n+1

Proposition 3.5. The motives Mﬁ 4+, are pure of weight n|| + 1. Moreover, they are equipped with
(=1)"M+1symmetric perfect pairings

A A
Mn+1 X Mn+1

- Q(—n|A| = 1).

Proof. The motives grnW|/1|+1(HZM |_l(lC)(—l)) are pure of weight n|A| + 1 by construction. Addi-
tionally, they are equipped with (—1)""*+1.symmetric perfect pairings, using a similar proof
[16, Thm. 3.2] for exponential mixed Hodge structures. Taking into account the isotypic
components, the motives Mft 4, are also pure of weight n|4| + 1, and possess the induced

(=1)"*+1_symmetric pairings. O

3.2 | Realizations in characteristic 0
3.2.1 | The de Rham realizations

The de Rham realizations of Mfl 4+ underlies a pure Hodge structure of weight nk + 1. Whenn = 1
and A = (k), the Hodge numbers of M’z‘ are computed in [16, Thm. 1.8], which are either 0 or 1.
In [32, Thm. 1.2 & Thm. 5.23], we computed the Hodge numbers for more motives and expressed
them using generating series. By a direct computation on generating series in [32], we deduce the
following corollary.

Corollary 3.6. For pairs (n + 1, k) listed in the table in Theorem 1.6, the Hodge numbers of M’;H IR

are either 0 or 1.

For Mj gr and Mgzézlg’ although we cannot compute their Hodge numbers directly, they still have

Hodge numbers either 0 or 1, see Remark 5.10 and Remark 5.17.
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3.2.2 | The /-adic realizations
For a prime #, the #-adic realization

(My

n+1> c= w Han_l(ICE, @K)G/leurﬁh)(n(_l) (37)

e = B e
of Mﬁ L1 1s a continuous #-adic representation of the absolute Galois group Gal(Q/Q), which is
pure of weight n|4| + 1 and is equipped with a (—1)"*1*1.symmetric pairing by Proposition 3.5.
Similar to the situation for motives, we indeed obtain a representation of Gal(Q/Q). As explained
in Remark 3.4, although the action of u,.; does not commute with Gal(Q@/Q), the invariants of
M,4; are stable under the action of Gal(Q/Q).

For the case of symmetric power moments of Kloosterman sums, we computed the dimensions
of (M’r‘l +1)dr in [32, Cor. 2.19]. By the comparison theorem, we have the following proposition.

Proposition 3.8. The dimension of (MI; e is

alk,n+1) 2|n,

S
1 k+n
— 1) - —
n+1<< . ) d(k,n + )) Zomk(u) 0 2} nk,

u= b(k,n+1) else,

where the numbers a(k,n + 1), b(k,n + 1) and d(k, n + 1) are defined in Section 2.5.1, the numbers
my (u) are defined in (2.16).

We will study the ramification properties of these Galois representations in Section 4.1.

3.3 | Other realizations in characteristic p > 0
3.3.1 | The ¢-adic case

Proposition 3.9. We have'

k]

- A n|A|+i n|A|+1 GaXUns1:Xn
! ~/ B
Hets (Gm’ﬁp’ Kln+1> ~H,, <Gm,tﬁp ’ “(le’p(fu))

forie{0,1,2}.

Proof. We provide the proof for the usual cohomology here, and the properties of the cohomology
with compact support and the middle cohomology can be proved similarly.
Let pr, be the projection from G"mlll X Gy, , to the last factor G, ,. The projection pr; is

defined in a parallel way to pr,. By the isomorphism ([n + 1]*$¢ ( f~|/u))"n+1 ~ Z%( > We have
p

T Here, the action of u,,, is induced by that on Gmr, ¢y
Remark 3.4.

.1 and we can understand the y,, ;,-invariants similarly as in
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K1}, ~([n+1],[n+1]"KI}, )¥r+1. Then,
; ; Hn+1
i 2
Hift <Gm F ’Kln+1> = Hle (Gmﬁ ’ <[I’l + 1] [I’l + 1]*Kln+1> )

m[F’

i _ 1|
—H;I(Gm,ﬂ,[ml (kiS

G, n Mn+1
o (g (gt o X
- 6,2 mF, ’ Pp(F1ap) ’

where in the last isomorphism, we used the geometric description of Klfl 4 from
Proposition 2.13. O

. 21 Mn+1
~H, ( [n+ 1]*K1n+1>

)G/1 Xn Hny1

Similar to the construction for relevant de Rham cohomologies in [16, (2.12)], we have the
following corollary.

2 i
Corollary 3.10. There is a (—1)"*1*1-symmetric perfect self-pairing on H! Kl )

ét, mld(Gm,f ’
Theorem 3.11. Assume that n|1| > 3. We have isomorphisms of £-adic cohomologies

w i _ A ~ nIA| =240 gn_ G XPnt15Xn (—
grn|l|+iHét,c(Gm,[Fp’Kln+1> grn|/1|+zHetc (’Cmp’@f(gp)) AHmerdn(=1)

fori €{0,1,2}, and

Gyx
1 A n|A|-1 AXMn+1:Xn
Hetmld( m,F ’Kln+1> _grn|1|+1Hetc < Ep’Qf(gp)> (=D
G X
~orW n|Al+1 n|A| A%Hn+1:Xn
—grn|/1|+1Hét,/cEp< 1@ (8p) ) ’
Xt 41:Xn
which is also isomorphic to gr'’’ |/1|+1 n|/1| 1<]C— ,Q(8,) ) K (—1) when K is smooth.

Proof. By performing a change of variables (¢, x; ;) — (¢, x; ; /1), for i € {0, 1}, we obtain

niAl+ [ ~nldl+1 _ ~ g grial+
Hét,c <Gm,u'fp ’ 3¢p(f|/1)> = Hét,c < mF, 3¢ (¢ qm"”))
Then, considering the localization sequence for the triple
((Al x 6 ¢ . gaaw) ’ (G:;MIH, ‘- gaaw) , <0 v Gnmlfll’o»’
we have exact sequences

H',lMl_Hl( n|/1| @(§p> n|/1|+L< n|/1|+1 CZ{) « gagw))

ét,c ét,c

—)H’,”MH(A_ XGan $¢ (t- gmw)) - HnMHl( an @f(g’p )

ét,c ét,c

(3.12)
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fori € {0,1, 2}. Next, we consider another triple
(alx @t ), (Al x @\, £ - g, (A1 x K,0)). (3.13)
Observe that for any r > 0, we have
H (AL X @K % ) = (AL X @1\ . 2, )

= @ (2%, ) @ (E0: 0¢,)) =0,

a+b=r

where we performed a change of variables in the first identity by (¢, x; ;) = (¢ - ( gEAN=L x; 7)-So,
by the long exact sequences associated with the triple (3.13), we deduce

H’?MHi(Ai % Gn|/1| 31,0 « gwl)> Hr,ll/ll_2+i<ICEp,Qf(gp)>(_1)' (3.14)

ét,c ét,c

Now, we combine (3.12) and (3.14) to get exact sequences for i € {0,1,2}. Then, taking the
isotypic component of these sequences, we conclude

ét,c ét,c

n|A|=1+i { ~n|A| G Xy n _ p
H (Gmﬁp’Qf@p ) 2 — Hl <Gm,[F ’Kln+1>

_)Hnl/ll 2+l(IC_ @f({p))Gﬂx’u"“’X"(—l)—>Hr,l|/1|+l< n|/1| @f@p ) AXMn+15Xn

ét,c ét,c

(3.15)

by Proposition 3.9. By taking the graded quotient gr’’
analyzing the Frobenius weights that

nial+i 00 the sequence (3.15), we obtain by

W A ~ oW N|A|=2+i n_ G Xn( —
8r n|/1|+zH2tc(Gm,F ’Kln+1> = 8L +itler e (’C[Fp’@f(gp)) Pbnenan(=1).

In particular, by putting i = 1, we deduce

1 A _ 1 A w nlll 1 GaX s sXn (—
Hetmld( mF, ’K1n+1> gl’lMHlHetc( mF, ’K1n+1) grnI/lI 1 ét,c (IC @f(gp)) e 1X< 1)'

For the usual cohomology, we use similar localization sequences to get

GaXtns1:Xn

1 A n|A|+1 n|/1|
gn|/1|+1H ( mEP’Kln+1> grn|/1|+1Het/C ( Qf(§p> )

which is also isomorphic to gr'V ”M' 1(IC— ,Q.(¢ p))GﬂX/‘nH Xn(—1) when K is smooth. [

|/1|+1

From Theorem 3.11, the name of Mfl 1 is justified, because the L-functions of Mfl “ coincide
with the L-functions attached to Kloosterman sheaves Klfl +1
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3.3.2 | The p-adic case

Bessel F-isocrystal

Let ﬁp be the algebraic closure of Q,, and we choose an element @ such that wP~! = —p.

ps
This gives rise to a unique nontrivial additive character ¢ : F, — @:, satisfying (1) =1+ w
mod w?. The Dwork’s F-isocrystal Z_, is a rank 1 connection d + wdz with Frobenius structure
exp(w(zP — z)) on the overconvergent structure sheaf of A! over K = Q p(w). We denote &, as
the inverse image of #_, along a regular function h: X — Al.

The Kloosterman crystal is an overconvergent F-isocrystal also defined using the diagram (2.7)
by

Kl = Rﬂrig*gwa[n]-

Similar to the Kloosterman sheaves for reductive groups, there are Bessel F-crystals for reductive
groups from [40]. The connection associated withG = SL,,,; andV =V is (Klfﬁl )GA’IXSig“(%’”).

. . k :
By abuse of notation, we denote by Klfl 4+ the F-isocrystal (KI?H)G&JXS‘g“.

Rigid cohomologies
Similar to the #-adic case, we have for ? € {&, ¢, mid}

GaXMpy1:Xn
) w].

HY,, (6,0/K.KI )=H”“'“(G;‘J““,$

rig,? n+1 rig,? wﬂ,“

Using the argument in [16, §3.2.2] by changing the isotypic component from (S X U1, ;) to
(G X My415 Xn), We Obtain

rig,mid n+1 rig,c

H (@m/K,Klﬂ ): g HI e /RO 2 (1) ], (3.16)

which is also isomorphic to ngMHH?ﬁlgM_l(]C /K)C#n+1:2n(—1)[w | when K is smooth.

4 | L-FUNCTIONS OF KLOOSTERMAN SHEAVES

In this section, the main goal is to prove Theorem 1.6. First, we study the Galois representations
(Mfl +1)f to provide the necessary properties needed in proving Theorems 1.6 and 1.7. The gen-
eral case is covered in Theorem 4.5, while a more detailed analysis of the case of Sykaln 4118
provided in Theorem 4.15. We also review essential properties of Deligne-Weil representations in

Section 4.2. Lastly, Theorem 1.6 is proven in Section 4.3.
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4.1 | Galois representations attached to Kloosterman sheaves
411 | A compactification

Let k be an integer and p a prime number, not dividing n+ 1. The Laurent polynomial
gﬁ"l = Zf,‘zl(zj.’:l yi,j + H;y) on the torus G:‘nk@ defines a hypersurface K. We select a toric
Vi ’
compactification X,,, of G"k following the approach in [16, §4.3.2], see also [32, §5.2.3]
We start with the pair (G"kQ, 9, +1) Let M = @i, 2y be the lattice of monomials on G”m]fQ

and N = P; j Ze; j the dual lattice. We consider the toric compactification X of an"@ attached to
the simplicial fan F in N, generated by the rays

Rxo - Zi,j €i,j€i,j»

where; ; € {0, 1} and (g; # 0. Each simplicial cone of maximal dimension nk in F provides

i
i,j/1,j
an affine chart of X, which is isomorphic to A" On each chart, the function gﬁkl has the same
structure. For example, we can consider the maximal cone generated by

Vig,jo == Z et Z €io.J

1<igip—1,1<j<n 1<j<Jo

for1 < iy < kand1 < j, < n, where the affine ring associated with the dual cone is the polynomial
ring @[ui’ j] such that

Vij/Vijwa1 1<j<n,
Uij =Yij/Visa i<k, j=mn,

yk,n i=k’j=n'

In this chart, we can rewrite g™ +1 as 91/(H1<]<n 1 Macicre; ! ) where

k-1 n
=1+ 2L [Tw, I1 Hueﬂﬁ [T i IT wi) -
e=1 j=1 2<i<e Jj 1<j<n 2<igk

1<j<n 1<j<n

for a polynomial h. The toric variety X provides a compactification of (G"k g +1) where the
closure of the zero locus of gEikl, and X \G’r;lk form a strict normal crossing divisor.

We take the Zariski closure of the hypersurface Z( gEkl) inside X, denoted by K. One can check
that

r=1 n n
‘ o
Z(g) 0 Z(uy ) = @, Zg)nZGw ) = Z 1+ X [Ty - [T fy- [T
e=1 j=1 2<i<e j=1

1gjsn
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and

r-1 n n

n n—j
Z(0g,/0u; 1) N Z(u, ) = z . H u' ”e+1,j/u1,1
e=1 j= 2<i<e Jj=1
1<jgn

for 1<s<n and 2<r<k. It follows that for 1<s<n and 1<r <k, we have

Z(g)N Z(a g1/%u; )N Z(ur s) =@. We deduce that IC is smooth along the divisor
Z(T1<icka<jen i) Moreover, one can check that Z([T;¢c1cjen ;) NK satisfies the
strict normal crossing property.

Asfor K= KN G”k one can check that K is smooth if ged(k, n + 1) = 1 and has isolated sin-
gularities inside G”k if gcd(n + 1, k) > 1. In the latter case, the singular locus X of K has only
finitely many Q-points or [Fp points, all of which are ordinary quadratic. We perform blow-ups of
Gﬁf along the singular locus Z,(Q) and denote by K’ the strict transform of K. For convenience,

we denote K’ as K in the case gcd(k, n + 1) = 1. We denote by E, the closure of £’ in BlZO X).

Lemma 4.1. Let F be either Q or ﬁp. Suppose that gcd(k,n + 1) > 1, nk is even, and nk > 4. If
F= ﬁp, we additionally assume p } n + 1. Then, we have

an 1(]C )_ an 1(IC[F).

ét,c ét,c

J— J—
Proof. Let T be the preimage of X, along the blow-up morphism £ — K, which is a disjoint union
of quadrics. Then consider the commutative diagram of exact sequences

HX(Ty) —— H T ((O\Dp) —= HETH (K —— Hy 7 (Tg)

l: lﬁ (4.2)

H H(E0)p) — H ((\Z)p) — HLH(Ke) — Hi T (0.

Under the assumption that nk > 4, the cohomology HZ;‘_Z((ZO)[F) and HZ["_I((ZO)[F) both vanish.
In particular, we find that y is surjective if we extend the diagram by one more column to the right.
As nk is even, the cohomology H”k_l(T[F) = 0, because T is disjoint union of quadrics. From

this, we conclude that Hg‘tkc_l(lc’ )= H”k Lep). O

ét,c

4.1.2 | The Z-adic case in general

Let p # ¢ be two different primes, 1 € N" be a sequence, and ¢, ; be either an (n + 1)th primitive
root of unity in [, or Q. We adopt the notation from the previous section and replace k with |1]|. We

denote by '(p) = Z'(]1|, n + 1, p) the singular set of E% . Recall that each singular point x of E@,F
p p

is of the form x = (x; j)1<i<k, 1<j<n = (§’n+1),j for some q; € {0, 1, ..., n}. The action of S| X t,4q
on ¥'(p) is given by

(o, §Z+1) : (xi,j) = (§Z+1 ) xo(i),j)'
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One can identify the S|, -orbits in >/(p) with the set of multi-indices
{ITeN"'||I|=|A], C;=0inF,, C; #0inC}=d(k,n+1,p) —d(k,n+1)  (43)

by sending x = (§n+1)lj to I such that I; = #{i | a; = j}. On multi-indices, the actions of u,,,; is

givenby ¢, 1 - Uo, Iy, -5 1) = (o Igs oo s Iimy)-
Assume that p + n + 1. The singular points in X/(p) are ordinary quadratic in the sense of
[1, XII 1.1]. Let n|A| =2m + 1 (resp. n|A| = 2m +2) and we apply the Picard-Lefschetz for-

mula [1, XV 34] to ﬁ, - Spec(Z ). For each x € ¥'(p), there is a vanishing cycle class

d, € H" A= 1( )(m) Well defined up to a sign. These vanishing cycle classes are orthogonal
to each other and satisfy

(5)(’ 8,) = (=D"2 (resp. (8, ax) =0).

We fix a place of Q over p and denote by I, the corresponding inertia group. To each element

o €I, the action on H M = 1(]C—) is given by

o(v) = {” D" Drewp 570,800, 24nldl, w

L — (_1)m erZ’(p) E(U)(U, 6x)5x 2 | nllla

where ¢ is the character I » > {#1} of order 2 if n|1] odd, and is the fundamental tame character
I, - l(iﬂn Upn (Q,) if n|A| is even. Moreover, we have an exact sequence

0— H?)*"l(ﬁép) o 1<1C ) Y @.(m—nial+1),
x€Z'(p)

where y is the sum of the intersections with the vanishing cycle classes &,.

Theorem 4.5. Suppose that gcd(n + 1, |A]) = 1 when n|1| is odd.

O Ifptn+1land IC’ is smooth, the Galois representation (M* ), is unramified at primes p,

n+1
and there is an lsomorphlsm of Gal(Q »/Q,)-representations

2
( n+1) gp et mid <Gmf ’ K1n+1)
(2) If p t n+ 1 and p # 2, the Galois representation (Mf‘l +1)¢ is at most tamely ramified.

—(0 — —(i
Proof. For simplicity, we omit the coefficient Q, in the cohomology. Let IC( ) X and IC(l) the

disjoint union of all i-fold intersections of distinct irreducible components of K \IC’ fori > 1. Let
F be either Q or [Fp. Consider the spectral sequence

ét,c

(EP%); = H! (lc(” )> = HPM(KL). (4.6)

For the case F = Q, since E(l) are proper smooth for all i, all morphisms in the E,-page are O for
the reason of weights. Therefore, the spectral sequence degenerates at the E,-page. It follows from
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the spectral sequence that

w nlA=1( por \ _ (pOnIA-1\_ _ -1 njal-1 { 2=
grnlﬂl—lHetc <]C > - (Eoon )Q ker( ét <KQ) - Hét <’C6
. nAl=1( 2o \ & ppuldl-1( 7

—1m<He[C (zc ) " (ch)),

n|i|—1

where the map « is the surjective edge map from the abutment H, " 0nial-1

(IC )to E;
that the above spectral sequence is equivariant with respect to the action of S 1] X Hp41- Using the
isomorphism in Lemma 4.1, we conclude that

. Notice

im(on) e Zn o (ME L ) (1). 4.7)

For the case that F = ﬁp, we conclude similarly G-equivariant isomorphisms

w nAl=1( g \ _ o W 0nAl-1\_ _ oW nAl=1{ r \ B nial-1 (35
811 et c <]Ca>_grn|/1|—1(Eoo )[Fp_grnl/ll—llm<Hét,c <’Cu—:p>_’Hét Kz, ) )

where we denote by W’ the (Frobenius) weight filtration to distinguish it from the weight filtration
W in characteristic 0. Recall that

1 yl w’ n|A|-1
Hetm1d<G Kln+1> 8241 et <1Cﬁp’@f({) =D

>GAX.“n+1 Xn

from Theorem 3.11. We obtain
! .
gr"1W|/1|+1IIII(‘G)GAXM"H’)(n(_1)[§‘P] ~H ét, mld(Gm Fp’ Kl/1+1) (4-8)
Now we consider the G-equivariant commutative diagram with exact rows and columns

nlll 1(K, ) S H "Ml_l(nl_)
e[C e[C Q
b L
0 — HIH- 1( ) —y HIM- 1( ) — Brer(pQ(m—nlal+1).  (49)

! !

an 1(IC[F) 1 Hnl/ll 1(IC )

where the middle row is given by the Picard-Lefschetz formula (we assume p } n + 1). More-

1= — .
over, taking into account (4.4), the representation H:tl’1 ! 1(]C6) of Gal(@,/Q,) is at most tamely
ramified when p # 2. We verified the second statement in the theorem.
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—
Notice that each class J, is a generator of H?';1 = 1(]C ,R¥(m)), with support {x}, where R¥

denotes the nearby cycle complex. So, A = @ Q,(—m)J,, is contained in im(ca). If we take the
isotypic component with respect to (G; X 1,41, X,,) on the second row, we have an exact sequence

GaXtpy1:X
an_l — G/IX/"VHI’Xn L an_l — Gﬂx#nJrl’)fn V4 * b an
0—H" (ICU—EP> Sl (Ka) L P am—nial+1) .

x€x/(p)
(4.10)
By a diagram-chasing argument, we get from (4.10) an inclusion
gr%/’1|+1im(‘8)G/lXMn+l7Xn [N im(a)G/IX/'{n-H’Xn_ (411)

When K’ has good reduction at p, the variety E% is smooth proper and the morphisms ¢ and
p
t, in (4.9) are isomorphisms. So, im(a) ~ im() are pure of weight nk — 1 (W and W’ coincide).
By (4.7) and (4.8), we get an isomorphism

A 1 A
M +1)f CP He’t,mid<Gm,E ’K1n+1)

of unramified Gal(@p /Q,)-representations from (4.11). This verifies the first statement in the
theorem. L]

Remark 4.12. In the discussion above, we have omitted the case where p | n+ 1. In this
situation, the singular points of Kz are isolated but not ordinary quadratic, rendering the Picard-

P
Lefschetz formula inapplicable in this case. Nevertheless, the vanishing cycles with respect to
—
K, — Spec(Z,) remain 0 if i # n|4| —1[23, Cor. 2.10].

p

If gcd(k,n + 1) = 1, then K = K/, and many of the above arguments, including (4.8), remain

valid even when p | n + 1. Based on the long exact sequence associated with vanishing cycles
[1, XTIII (1.4.2.2)], the cospecialization morphism

nlAl-1,7_ nlAl-1,7
H,, (IC[FP) - H," (Kg)
is injective. Hence, the diagram
A nlAl-1
etc (K ) 7 Hetc (lC@)

b !

0 —3 Hn|/1| 1(]C ) N Hn|/1| 1(ICQ)

induces an injective morphism

HMA = 1(]@ YCaX b1k (—1) = (MA

ét,c n+1 )f (4.13)

GaXbn+1:Xn
8t n|/1|+11m('6) Plardn(-1) & grn|/1|+1

Aslong as the dimensions of the source and the target of (4.13) are the same, the inclusion becomes
an isomorphism, implying that (M/1 1)f is unramified at p. For instance, whenn <2, p=n+1,
and p }k, the Galois representations attached to SymKI,, +1 are unramified according to
[41, Cor. 4.3.5] and Corollary 2.34.
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Let N(V;) and E(V;) be endomorphisms of V,, induced from N and E in 8[,  ;, as defined in
[14, § 5]. Inspired by the above examples, we conjecture that:

Conjecture 4.14. The morphism (4.13) is an isomorphism when the matrices N(V;) + E(V;)
is invertible.

413 | The ¢-adic case for Sym*Kl,,,,

Now we give a description in detail of M* il, , for A =(k,0,...,0), that is, the case for SymFKl,,, ;.
Leta(k,n + 1, p),a(k,n + 1),and 6(k, p) be numbers deflned in Section 2.5.1 and Proposition 2.22.

Theorem 4.15. Let p be a prime different from ¢ such that p } n + 1 and K’ has bad reductions at
p. Then,

(1) Ifnkisodd, gcd(k,n + 1) =1, and p # 2, the Galois representation (M’;H)f is tamely ramified
at p. For such primes, we have orthogonal decompositions (Mﬁﬂ)f =H@Eas Gal(@p/@p)-
representations such that
’ H[gp] = H:ﬁt,mid(Gm,fp’Sykaln+1)r
* E is generated by vanishing cycle classes.

(2) Ifn+ 1is a prime number, the Galois representation (M’Z +1)¢ is tamely ramified at p. For such
primes, the inertia groups I,, C Gal(@p /@,) act unipotently on (M’; +1)f such that (c —1)*> =0
forany o € I,,. The image U of the nilpotent part of the monodromy operator, denoted as N, is
generated by vanishing cycle classes and has dimension a(k,n + 1, p) — a(k,n + 1) — 6(k, p).
With respect to the intersection pairing, U is totally isotropic with orthogonal complement

M n+1) Ip . Moreover, the induced mapo —1: (Mn+1)/’ - (Mn+1)f/U is zero.

Proof. For simplicity, we replace the exponent (S X t,.1, x¥,) by (G, x). Since the Galois repre-

sentations are trivial or one-dimensional when nk < 3, we assume that nk > 4. When p  n + 1,

all singularities of Kz are ordinary quadratic. Consider again the spectral sequence (4.6) and let
p

F* be the induced decreasing filtration on H”k‘l(IC’ ). Since E(l’ are smooth proper over both Q

and [F ifi > 1, we have the isomorphisms Ha (IC— )~ Ha (IC—) fori > 1 and any a € Z. By the

Picard-Lefschetz formula, we have isomorphisms Hgt(ICE ) ~ ng(lcﬁ) for 0 < a < nk — 2. So,
p

(Ei’nk_l_i)a ~ (E;,nk—i—l)_

and
2 Fp

<E;,nk—i—1)F — (E:';glk—i—1)F _ (Ei,;'zk—l—i)a (4.16)

p p

ét,c

for i > 1. In other words, the dimensions of the graded pieces gr H”kgl(]C% )= gr%H”k 1(IC’_)
p

are independent of p when i > 1.

Lemma 4.17. The graded quotient gr%HZZ‘;l(IC% )X is pure of Frobenius weight nk — 1 — i if

1<i<nk—1, and is mixed of weight nk —1 and nk — 2 if i = 0. Moreover, the dimension of
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gr an I(ICI )G)(ls

gnk 2 ét,c

atk,n+1,p)—alk,n+1) 2|n,
Sym Kln+1> +30 2 } nk,
b(k,n+1,p)—bk,n+1) 2}nand2|k.

—dim H°<

m[F’

Proof. When 1< i < nk — 1, the graded quotient grl, H"k 1(IC’ )GX = (E;’nk_i_l)c’x is pure of

Frobenius weight nk — 1 — i, and its dimension is independent of p- By the exact sequence (3.15),
we deduce for 0 < i that

ét,c

G.x G.x
dim FHH RS 1<lc’ ) <dimw/, _, HIk- 1<1c’ )
ét,c
(4.18)

/ 1 k
= dim W), H}, (6,7 . Sym*Kl,., ).

By the long exact sequence (2.5), the dimensions of the graded pieces of the Frobe-
nius weight W' filtration on H1 (Gm[F ,Sym*Kl,,, ;) can be calculated in terms of those of

(Sym*Kl,, +1);5, (Sym*Kl, +1)Iy_)a, and (Sym¥Kl,, ;) eom. According to Theorems 2.15 and 2.18, as
0 )
(Sym*Kl, +1)? and (Sym*Kl,,, ,)%zom are pure of weight nk, we deduce that

k k 5
dimw’ H! <Gmﬁp,Sym K1n+1> dimW’, _(Sym Kln+1)y_)‘;,

nk—i~"ét,c

H! (G

!
forl<i. By Remark 2.14, we deduce thatdim W/, —Het (B,

pwhen j >

Sykaln +1) isindependent of

Now we replace p by a prime p’ at which fl has a good reduction. In this case
Hk= 1(IC’ )~ Hk= 1(]C’_) and the Frobenius weight filtration W’ on the left-hand side coincides

ét,c ét,c

with the we1ght flltration W on the right-hand side. In particular, we have

G.x G.x
w’ nk—1 ’ i pynk—1 /
B ni—1-iHerc <]Cﬁp,> = grpHy . (Kﬁp,> (4.19)
for all 0 < i < nk — 1. It follows that

G,x G.x
dim F'HH! <1c’ > =dimw/, , HI¥> 1(1c’ >
ét,c T nk—2—i""ét,c ,
’ ’ (4.20)
/ 1 k
=dim W), H} (6,,¢ .Sym"Kl,.,)

for 0 < i. Hence, we conclude that (4.18) is an equality. In particular, each gr! Hgtkc 1(]C’ )G X

is pure of Frobenius weight nk —1—1i if 1 <i<nk—1, and gr HZ’Z‘C 1(IC’ )GX is mlxed of

Frobenius weight nk — 1 and nk — 2.
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At last, using (4.20), we have

! G’X G?X G’X
dim gran_zgr%H’?k—l <K@,F > =dim ng an 1 <K, ) — dim ng Fl an 1 <K/ >
p

ét,c nk—2""ét,c nk—2 ét,c

—dlmgr etc( mF, , Sym K1n+1>

—dimgr, sy (Gmﬁp, , Sykaanr1 >

ét,c

By (2.5), Theorem 2.15 and Theorem 2.18, the above dimension coincides with the claimed
number. Ll

(1) Assume that nk is odd and p } 2(n + 1). By (4.10), the representation (Mfl +1)f is tamely
ramified.” By (4.4), the short exact sequence

0 — Hi (T, ) — H (Bg) — @uewp@i(-m) — 0

splits, and HZZ‘_I(E[/EP) is orthogonal to A = @, Q,(-m)8, in ngk—l(Efa). By taking the
(G, yx)-isotypic component and by doing diagram-chasing argument in diagram (4.9), we
deduce

im(a)%* = im(8)%* @ A%

Since nk is odd, the global monodromy group of Kl,,, is SP,,;, which implies that
HO(G - ,Syka1n+1)=O. By Lemma 4.17, we have dimgr%_zgr H7k- 1(]C’ )GX =0.

ét,c

Hence, 1m(,6’)G X is pure of weight nk — 1 and gr'¥, im(g)C2*Hn+1:2n = 1m(,6)Gﬂx/‘n+1 Xn, By
(4.8), we can take H = im(8)%* and E = A%X.

(2) Assume that n + 1 is a prime number. Recall that nk = 2m + 2 and A = erz,(p) Q (—m)s,

MI -1

is the subspace of HZ;“I(E%) generated by vanishing cycle classes. By the Picard-Lefschetz

formula, the action of o € I, acting on a cohomology class v € Hgtk‘l(fa) is given by

o) =v—(-D""t(0) D <v,8, >3,
xex'(p)

which implies that (¢ — 1)? = 0. It follows that
I Gy
(M’r‘lﬂ) P = (AH)7 = im(@)®% n H"k 1<IC ) > im(B)°,

and the induced map o —1: (Mﬁ +1)f (MK ), /A% is zero. It suffices to calculate the

dimension of U = AGX,

n+1

(M4 ), is possibly wildly ramified at p = 2 is because the character € : I, — {+1} has order 2.

n+1
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Consider the diagram

im(8)%*
6

—
0 — im(a)%* N Hg’tk_l </Cﬁp> % im(a)%

14

> C (4.21)

(Drex(pQe(—m — 1))°%
where C is the image of the map y inside (@®,.cy ( p)@f( -m— 1))G’7f .

Lemma 4.22. In the diagram (4.21), the vertical map i, is an isomorphism. If p = 2 and k is even,
the cokernel of the vertical map i, is one-dimensional. Otherwise, the map i, is an isomorphism.

Proof. By a diagram-chasing argument in (4.9), we conclude that im(3) = im(a) n Hg‘_l(E% ).
p
So, the map i; is an isomorphism.
Consider the subsequent part of the diagram (4.9), that is,

k k
Her (g ) — HEL (KR

ok

Hy ™! (E%) — Brew(pQe(-m—1) —— HYE <E;?p> — HJ¥ (ET@) —30

where the two vertical maps are the surjective edge map from the abutment H”k (IC’ ) to E%"k_ By

the same argument for the cohomology of degree nk — 1, we have im(a’) = gr; Hg‘tkc(lC’_) and

by (3.15) an exact sequence

Q¢ )(D% - H;

étc ét,c

(6, Sym“Kl, 1) = HE (K YO (=DIE,1 = Qo). (423)
Assume that K has good reduction at p’. Consider the above diagram for p’, then
im(B’) = im(a’). Since H?, (G ,Sym*Kl,,,;) = 0 and im(g8’) is pure of Frobenius weight nk,

ét,crm,) F /

we have im(8/)%% = 0 by (4.23). ThlS forces im(a’)®% = 0, which does not depend on the choice
of p.

If p # 2 or k is odd, we have dim H7, - F, ,Sym*Kl,,) = dim HY (G, 7, ,Sym*Kl,,,;) = 0.

So, (4.23) implies that im(8") = 0. Hence, xk=0,C= (@xez/(p)Qf(—m — 1))01, and the two
vertical maps i; and i, are isomorphisms.

If p=2 and k is even, the monodromy group of Kl,,; is either SO, ,; or G,. So,
(Symk K1, +1)Gge°m is one-dimensional and we have

ét,c

dim H? (Gm,ﬁp, Sym*Kl,,,,) = dim Hgt(Gmﬁp, Sym*Kl,,;) = 1.

By the property of the spectral sequence (4.6) and (4.23), we have

G.x
k : )
gr ZHZH;C( mF, ,Sym Kln+1> ~ ngVkHHZt C<IC@,FP> (1) = im(8)%¥(-1).
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So, im(8/)%* is one-dimensional. Since im(a’)%¥ = 0, the morphism x is surjective. Therefore,
in (4.21), the cokernel of i, has dimension 1. O

Notice that A®* is contained in im(B8)%%, because
Gx . = .
A%X C (AH)7 = im(e)®F n HF 'Kz ) = im(B)°.

Since A®X is pure of Frobenius weight nk —2, we deduce that A®X C W;l _im(B). By
Proposition 3.8, the properties of the spectral sequence (4.6), and (4.7), we have

nk—1
- . i nk—1—i\G>
nk I(IC_)_ Z dim (E:;onk 1 1)6}(

dim im(e)* = dim H} ! (K
i=1

(" —dle,n+1) ) I
= P} — dim (Sym K1n+1)50 —alk,n+1).

As for the dimension of im(8)%¥, by Proposition 2.22, (4.8), and Lemma 4.17, we deduce that

dimim(8)®* = dim gran,_lim(ﬁ)G’X + dim gran,_zim(ﬁ)G’X
k+n
( . )—d(k,n+1,p)

_ : k Iy
= — — dim (Sym Kln+1)ﬁ0

—a(k,n + 1) + dim ng,c<6mﬁp’ Sym*Kl,,. )

Notice that we have the identity d(k,n + 1,p) —d(k,n+1) = (n + 1)(a(k,n+ 1, p) —a(k,n +
1)). Then, we get from Lemma 4.22 that

dim ¢ 2 dim im(c)®* — dim im(B)°*

=alk,n+1,p)—alk,n+ 1) —dim Hgt (G Syka1n+1)

m,fp 4
. ! . .
= dimgr) im(8)%* > dim A®¥ (4.24)

= dim im(a)®* — dim(A+)%¥

) dim im(a)% — dimim(8)°* = dim C,

where () is deduced from the short exact sequence (4.21), and (*x) is because A+ = im(B). So,
AGX = gr:f’kl_zim(ﬁ)c"’?f , and its dimension is

alk,n+1,p) —alk,n+1) - dimH;, (G, 7 ,SymKl,.,). O

Remark 4.25. We proved that when n + 1 is a prime and p # n + 1 the representation (M’; e
satisfies the weight-monodromy conjecture, where the monodromy filtration is given by

M,y = A%%(=1) C My = im(B)3(~1) € My, = im(a)®%(~1).

In other words, the associated Weil-Deligne representation is pure of weight nk + 1 (see [3, p.528]
and Section 4.2 for the definition).
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Corollary 4.26.

(1) If n+ 1 is a prime, the exponent of the Artin conductor of (M’r‘lﬂ)f at pis alk,n+1,p) —
alk,n+1)—1ifp=2andkeven, andis a(k,n + 1, p) — a(k,n + 1) otherwise.
(2) The exponent of the Artin conductor of{(M(Sz’l))f}f atpislifp=2,7,andis0if p # 2,3,7.

(3) The exponent of the Artin conductor of { MZ? }oatpislifp=2andisOifp #2,3.
3 )t

Proof. For the first case, the Artin conductor of (M’; +1)f at pisdim C = dimim(a) — dim im(g).
We get the exact formula by Lemma 4.17 and (4.24).

For the second and the third cases, if p # 3, we can perform the same argument in the above
theorem for {(Mgz’l)) }¢ and {(Mgz,z)) ,}¢» together with the local behaviors of K1(32,1) and Klgz,z)

from Propositions 2.17 and 2.19. If p = 3, the representation {(M(j’l)) /3¢ is unramified by an
analog of Corollary 2.34 and Remark 4.12.

4.1.4 | The p-adic case

We study the p-adic Galois representations (Mfl +1)p in this section.

—
Proposition 4.27. The p-adic representation (Mfl +1)p isdeRham. If p t n+1and K has good
reduction at p. Then, the representation (Mfl +1)p is crystalline and there is an isomorphism of
Frobenius modules

Gal(@,/Q,)
1 A p/=p
Hrlg m1d< m/K K1n+1) ((Mn+1)p ® Bcrys) ®K

Proof. Asin Section 4.1.1, we let K’ be K if gcd(n + 1, k) = 1 and the blow-up of K along singular
locus otherwise. By [4, §3.3(i) and §3.4], since the p-adic representation HZZ‘_I(E,—, @p) comes
from a proper smooth variety, it is de Rham. Then, we conclude the first assertion by the fact that
the subquotient of a de Rham representation remains de Rham.

Now assume that ged(p,n + 1) = 1 and K’ has good reduction at p. Then, by the p-adic com-

—
parison theorem, the representation H?Z“I(IC@ ) is crystalline. Therefore, as a subquotient of
P
nk—1,30"_ : vl : :
HY, UCQP)’ the representation (M ), remains crystalline.

Recall that we have an isomorphism

1 W i1 Gty
Hrlgm1d< /K KI”‘H) grnl/ll 1 rig,c (]C/K)( 1) A% M1 X’I[ ]

from Section 3.3.2. We have results similar to those in Lemma 4.1 by simply replacing étale coho-
mology with rigid cohomology everywhere. Consider the spectral sequence [27, Prop. 8.2.17 and
8.2.18(ii)]

ij —/(@) i+j ’
B = ng(lC /Q, >=>Hngc(lC /Q, )
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and we denote by
— —/(1)
a: Hnl}L| 1<IC_FP/@P) nd H”Ml 1<IC_[Fp /@p>

. . - -1 o Lo .
the differential from E;)’"W Yo El1 MA1=1 Since the varieties K . are smooth proper for alli > 1,

the only contribution of weight n|1]| — 1 to the abutment of the spectral sequence comes from the
kernel of a. So,

w n|a|-1 / ~ oW
grn|/1|—1Hrig,c <]CEP/QP> > g1 kera. (4.28)

Then, use the analog of (4.7), (4.28) and the p-adic comparison theorem, we get the isomorphism
of Frobenius modules

)Gal(@p/@p) QK. 0

rig,mid

H, <Gm/K’ Klf;+1> = ((Mﬁ+1)P ® By

4.2 | Generalities on Deligne-Weil representations

We recall the definition of Weil-Deligne (or simply, WD-)representations from [36]. For each
prime p, there is an exact sequence

1-1, - Gal(@,/Q,) ~ Z - Gal(F,/F,) - 1,

where I, is the inertia group at p. Moreover, there is a surjection, : I, — Z,. Let W@p be the Weil

group of @, that is, the inverse image of the subgroup generated by Frobenius of Gal(ﬁp [Fp) = V4
in Gal(@p /Q,) equipped with the induced topology.

A WD-representation on an E-vector space V (with discrete topology) is a pair (r, N), consisting
of arepresentationr : WQP — GL(V) with open kernel, and an endomorphism N € End(V), such
that

r($Nr(p~") = p~'N

for every lift ¢ € W@p of Frob,. It is called unramified if N =0 and r(I,) = 1. It is called
Frobenius semisimple if r is semisimple. For a lift ¢ of Frobenius, we can decompose
r(¢) = r(p)Sr(d)* = r(p)4r(¢)*s, where r(¢)% is semisimple and r(¢)* is unipotent. Any WD-
representation (r, N) has a canonical Frobenius semisimplification (r, N)%, by keeping N and
r| I, unchanged, and replacing r(¢) by r(¢)**.

If # # p, there is a canonical way to attach a WD representation WD ,(p) to an #-adic repre-
sentation p of Gal(ﬁp, Q),) as follows. By Grothendieck’s quasi-unipotency theorem, there exists
an open subgroup H of I, of finite index, and a unique nilpotent endomorphism N satisfying
p(o) = exp(t,(o)N)forall o € H. Let ¢ be a lift of Frobp ando € I,, one sets

r($"0) 1= p(¢"0) exp(~t,()N). (4.29)

Notice that WD ,(p) is unramified if and only if p(I,) = 1, that is, p is unramified.

A WD-representation (r, N) on Q, is called pure of weight w [3, p. 528] if there is an exhaustive
and separated ascending monodromy filtration M; of V such that
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 each F,V is invariant under r,

* for each lift ¢ of Frob,, all eigenvalues r(¢™) on grf” V are Weil-numbers of weight m - i,

* the endomorphism N sends M;V into M;_,V, and induces isomorphisms
NJ: gri‘v/IJer ~ gr’b‘u’[_jV for each j > 1.

4.3 | Potential automorphy

A weakly compatible system % = {p,} of n-dimensional #-adic representations of Gal(Q/Q) over
Q and unramified outside S is a family of continuous semisimple representations

o, : Gal(@/Q) —» GL(V,)

for each prime number #, with the following properties.

(1) If p ¢ S, for all # # p, the representation p, is unramified at p and the characteristic poly-
nomial of p,(Frob,) is a polynomial with coefficients in Q, independent of the choice of
.

(2) Each representation p, is de Rham at #, and is crystalline if £ ¢ S.

(3). The Hodge-Tate weights of p, are independent of 7.

To a weakly compatible system of 7-adic representations, we can attach a partial L-function

L3(R,s) = H det(1 — p,(Frob,)p~*)~".
DPES

Moreover, we call Z strictly compatible if for each p, there exists a WD-representation WD (%)
of W@p over Q such that for each # # p and each 1: Q & Q,, the push forward (WD p(R) is
isomorphic to WD ,(o,)*. To a strictly compatible family %, we can attach an L-function

L(#,5) = [ ] det (1 - Frob,, - p=* | WD ,(&)»N =),
p

which differs from L5(%, s) only by finitely many Euler factors at p € S. To describe the complete
L-function, we still need the gamma factor at co. Serre conjectured the form of the gamma factors
at infinity of the complete L-function for a pure motive over Q in [33, § 3]. We denote by L (2, s)
the gamma factor associated with &.

Theorem 4.30 [30, Thm. A & Cor. 2.2]. Let # = {p,} be a weakly compatible system of n-
dimensional ¢-adic representations of Gal(Q/Q) defined over Q and unramified outside S. Suppose
that {p,} satisfies the following properties.

(1) (Purity) There exists an integer w such that, for each prime p & S, the roots of the common
characteristic polynomial of p,(Frob,,) are Weil numbers of weight w.

(2) (Regularity) The representation p, has n distinct Hodge-Tate weights.

(3) (Odd essential self-duality) Either each p, factors through a map to GO,(Q,) with even
similitude character, or each p, factors through a map to GSpn(ﬁf) with odd similitude
character. Moreover, in either case, similitude characters form a weakly compatible system.
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Then, there exists a finite Galois totally real extension F /Q, over which all the p, become automor-
phic. Additionally, for any distinct primes p and ¢, the WD-representation WD ,(%) of Gal(Q,,/Q),)
associated with p, is pure of weight w. Furthermore, the completed L-function

ANR,s) =L (£,s) - L(A#,S)

satisfies the functional equation A(%,s) = e(F, ) A(ZY,1 — s).
We are now in a position to prove Theorem 1.6 using the above theorem of Patrikis-Taylor.

Proof of Theorem 1.6. Assume that k > 3 because by Proposition 3.8, we have dim M* ns1 = Owhen
k < 2. Let S(k,n + 1) be the set of primes p such that either p | n+1or ]C’ is not smooth.

We start with verifying that the family of semisimplifications of #-adic Ga101s representations

= {(Mn +1)SS} is weakly compatible. Indeed, it is sufficient to demonstrate that the three con-
d1t10ns of weakly compatible systems are satisfied for {(M’f1 +1)¢}- The first two conditions are
readily derived from Theorem 4.5 and Proposition 4.27. Regarding the third condition, we fix an
embedding @, < C and utilize the p-adic comparison theorem to obtain a filtered isomorphism
as follows :

)Gal(ﬁp /Qp) )Gal(ap /Qp)

((M"H) ® Byg = (granHH"" (K, Q,)H%nt2n(=1) @ Bag

ét,c

k— . ~ (MK
= grnk+1HZt c 1(]Cap’ @P)Sk)('un+1 An (_1) ®C = (Mn+1)dR’

As a consequence, the Hodge-Tate weights are independent of #.

In order to apply the Theorem 4.30 to the weakly compatible family %, it is necessary to verify
the conditions stated in Theorem 4.30. The purity is satisfied because the Galois representations
(Mﬁ +1)¢> as well as their semisimplifications, are pure of weight nk + 1. The regularity condition
is also fulfilled for pairs (n + 1, k) presented in Theorem 1.6, as the multiplicities of Hodge-Tate
weights of (Mﬁ +1)f (and their semisimplifications) are either 0 or 1, by Corollary 3.6 and the
comparison isomorphism above.

The odd essential self-duality for # can be verified as follows. The perfect pairing, as described
in Proposition 3.5, indicates that the representations (M* +1)f factor through either GSP((Mn +1)f)

or GSO((M’; +1)f), with a similitude character )(gykc“. By selecting a generator of Q;( nk —1),
we can regard the perfect pairing as a compatible nondegenerate bilinear form on the module
(M’; +1)¢ over the group ring of Gal(Q/Q), with the involution g — )(C‘y’ék‘l(g) g~'. According to
[35, Thm. 4.2.1], the semisimplification also factors through either GSP or GSO, with the same
character. This establishes the odd essential self-duality for %.

According to Theorem 4.30, the weakly compatible family &% is potentially automorphic, and
the partial L-function L%(%, s) extends to a meromorphic function on C satisfying a functional
equation. Observe that the partial L-function of % agrees with LS (k, n + 1; ), as their local factors
coincide for each p ¢ S(k,n + 1), which can be verified by applying Theorem 4.15, Remark 4.25,
and [16, Lem. 5.40]. As a result, the partial L-function LS(k,n + 1;s) can be completed to
Ay(s) = L (R,s) - L(#,s), which extends meromorphically to the whole complex plane and
satisfies the claimed functional equation in Theorem 1.6. O
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5 | CONJECTURES OF EVANS TYPE

In this section, we prove Theorem 1.7 with the help of the database LMFDB [37]. Recall that a
modular form will refer to a normalized holomorphic cuspidal Hecke eigenform.

5.1 | Modularity
5.1.1 | Galois representations attached to modular forms

One can attach two-dimensional Galois representations to modular forms f € S, (I';(N)) of
weight k, as constructed in [8, 11]. More precisely, let N and k be positive integers, f € S, (T(N))
a modular form, and K = Q(a f( p)) the number field generated by the Fourier coefficients of f.
Then, for any place 4 of K over a prime £ { N, there exists a continuous odd irreducible Galois
representation

pra: Gal(@/Q) — GL,(K ), (5.1)

unramified if p + N, such that for p } N, the trace of the arithmetic Frobenius Frob;)1 at p is
a,(f).

Notice that p A has conductor N and Hodge-Tate weight (0, k — 1). Moreover, it is odd, that is,
the value of det(p ;) at the complex conjugation is —1.

Givensuchap;;, we denoteby p; ; : Gal(Q@/Q) — GL,(F,) itsmod # reduction. It is obtained
by choosing a Galois stable 9,-lattice in KJ%,/I and reducing modulo the maximal ideal of O,,
where O, is the ring of integers of K;. Although o, ; depends on the choice of the lattice, its
semisimplification does not.

51.2 | A special case of modularity

We recall a weaker version of a theorem by Kisin [25, Thm. 1.4.3], which says that the #-adic Galois
representations associated with certain two-dimensional motives are modular, that is, isomorphic
toone p; » in (5.1). The argument is originally due to Serre [34, §4.8], with similar arguments also
appearing in [41, Thm. 4.6.1].

Theorem 5.2. Let M be a pure motive of dimension 2 over Q with coefficients in Q. Assume that the
nonzero Hodge numbers of the de Rham realization of M are h™5 = h®" = 1 for some 0 < r < s, and
the ¢-adic Galois representations M, are odd and absolutely irreducible. Then, for some N > 1 and
some Dirichlet character ¢ : Z/NZ* — C*, there exists a modular form f € S;_,(T((N), ) such
that ps , = M,(r).

Remark 5.3. By (4.8.8) and the last paragraph in [34, p. 216], the 2-adic and 3-adic valuation of N
are at most 8 and 5, respectively.

5.2 | Conjectures of Evans type

In this subsection, we prove Theorem 1.7 by considering each case individually.
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5.2.1 | e-factors
In order to apply Theorem 5.2 for motives attached to Kloosterman sheaves, it is necessary to check
that the associated Galois representations are odd. This is ensured by the following Proposition

and Chebotarev’s density theorem.

Proposition 5.4. Ifn|A| is even, then

A GimH! (6 - KI
E(Plp’j*Klﬁ_;_l) =p 2 e[,mld( mFp n+1)‘

F
Proof. By applying Corollary 3.10, we find that the middle #-adic cohomology
H; ¢ i d(Gm,F ,Klﬁ +1) is a symplectic representation of Gal(F,/F,). Consequently, the determi-
nant of Frob,, is a power of p. Taking into consideration both the dimension and the weight of

H (G K ), we deduce that

ét,mid \ UmF,> T n+

n+1

e(PL.JKLL,, ) = det(~Frob,, HL, (PL ,j,KI%, )

AL g _ i
= det(Frobp,Hl (GM,FP’KI;}l+1)) =p 2 dim Hcl‘t,mid(Gm,Fp’KlnH). .

ét,mid

522 | Sym*Kl,

The motive M‘S‘ is defined over Q, pure of weight 9 and equipped with a skew-symmetric perfect
pairing, as described in Proposition 3.5. It has dimension 2, and the Hodge numbers h?°~P of its
de Rham realization are 1if p = 3 or 6, and 0 otherwise by [32, Thm. 1.2]. Our goal is to show that
the compatible system of Galois representations {(M‘S‘)f(6)} is modular.

Proposition 5.5. There exists a (unique) modular form f in S,(T,(14)), such that for each prime
p & {2,7}, the Fourier coefficient a,(f) satisfies

1
as(p) = —E(mg‘(p) +1+p*+p"),

where m;‘(p) is the symmetric power moment of Sym*Kl,. In particular, the label of this modular
form in the database LMFDB is 14.4.a.b.

Proof. By (4.3), we find that the hypersurface Kz in (3.1) is smooth if the number d(4, 3, p)
p

in Section 2.5.1 is 0. According to Theorem 4.5, we find that the #-adic representation (M;‘)f is
unramified at p # 2, 3, 7. As noted in Remark 4.12, the #-adic representation (M‘S‘)f is also unram-
ified at p = 3, because the middle #-adic cohomology H; i 46 mE,’ Sym*Kl;) has dimension 2
by Corollary 2.34. Additionally, Corollary 4.26 tells us that the conductor of the compatible family
{M),3, is 14.

Since the motive M‘S‘ is pure of weight 9 and its nonzero Hodge numbers are given by
h*® = h? =1, the Hodge-Tate weight of (M3),(6) is (0,3) with multiplicity 1 by the p-adic
comparison theorem.
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According to Proposition 5.4 and Chebotarev density theorem, we find that the determinant
det((M3),(6)) is equal to )(jyc, - AS Xeye () = —1, the representation (M3),(6) is odd. Thus,
{(M;‘)f(6)} is modular according to Theorem 5.2.

By the exact sequence (2.5), Theorem 2.15, and Theorem 2.18, we deduce that

Tr(Frob, | (M3),) = —(m$(p) + 1+ p + p?).

It follows that for any p & {2,7,¢},
-1 4 1. 4 2
as(p) = Tr(Frob,," | (M3),(6)) = —E(ng(l’) +1+p+po).

Now, the remaining task is to identify the modular form. The weight and the level of the cor-
responding modular form are k = 4 and N, = 14. By computing the Fourier coefficient a;(3),
as detailed in Section A.1.1, we find that this modular form f is labeled 14.4.a.b in the database
LMFDB. O

523 | Sym’Kl,

The motive Mi is defined over Q, pure of weight 10, and equipped with a symmetric perfect pair-
ing. It has dimension 2, and the nonzero Hodge numbers h?:!0~P of its de Rham realization are
1if p =4 or 6 by [32, Thm. 1.2]. We aim to demonstrate that the compatible family of Galois
representations {(M?),(6)} is modular.

Proposition 5.6. There exists a (unique) modular form f in S3(FO(15),(E)) with complex
multiplication, such that for each prime p & {2, 5}, the Fourier coefficient a;(p) satisfies

4P =~(15) M@ + 1+ 07+ )

Here, mi( p) is the symmetric power moment of Sym>Kl,. In particular, the label of the corresponding
modular form is 15.3.d.a in the database LMFDB.

Proof. Based on (4.3), Theorem 4.5, and Theorem 4.15, we know that (Mi)f is
unramified if p # 2,3, 5, and tamely ramified if p = 3, 5. Moreover, applying Proposition 2.22,
we obtain the dimension of the middle #-adic cohomologies of Sym®Kl, at p # 2. Hence,
(Mi);" ~H! (6, = ,Sym’Kl,;) has dimension 1 when p =3 or 5. This implies that the

étmid \ UmF,’
conductor N of {(Mi)f} is of the form 2° - 15 for some s € Z,.

Lemma 5.7. For each ¢ # 2, the representation (Mi)f is unramified at p = 2. In particular, the
conductor N of {(M3),} is 15.

Proof. At p =2, the Swan conductor of Sym3Kl, is at most 5. Since the monodromy
group of Kl, is Sp, and the symmetric power of standard representation of SP, remains

irreducible, the zeroth cohomology Hg z(Gm,Fp’ Sym?3Kl,) vanishes. By the exact sequence (2.5) and
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Grothendieck-Ogg-Shafarevich formula, we deduce that

1
dim Het mld( m, [F ’

Sym’Kl,) = Sw(Sym’Kl,) — 3 — dim(Sym’K1,)’s.
As a result, we find that 3 < Sw(Sym3Kl,) < 5

By Section A.2.1, the trace of Frobenius at p = 2 on H!

etmld( mF ’Sym Kl4)

—(m(p) + 1+ p* + p* + Tr(Frob, | (Sym’K1,)’®)) = —16 — Tr(Frob,, | (Sym’Kl1,)=).

We proceed by examining each possible value of Sw(Sym?3Kl,) as follows.

* If SwW(Sym>Kl,) = 5, the sheaf Sym>Kl, has only one slope (equal to 1/4) at oo, which implies
that (Sym>Kl,)’s = 0. So, the dimension of the middle #-adic cohomology is 2. As a result, the
representation (M ), is unramified at p = 2, thanks to Remark 4.12.

* If Sw(Sym3Kl,) = 4, then dim(Sym>Kl1,)’s <
- If dim(Sym>Kl,)'= = 1, the middle #-adic cohomology of Sym3K]l, is 0. The trace of Frob,

onH! (G Sym?>Kl,) is 0. So, we obtain

ét,mid m[F ’

0=-16 — Tr(Frobp | (Sym? K14)I§)-

This is impossible because (Sym>Kl,)'s is pure of weight 9 and one-dimensional.
- If dim(Sym>Kl,)'s = 0, the middle #-adic cohomology is one-dimensional. The trace of

Frob, on H}, ..(G mE, ,Sym’Kl,) is ~16. However, since H;  ..(G > Sym 3Kl,) is pure

of weight 10 and one- d1mens10nal, this situation is not possible.
« If Sw(Sym>Kl,) = 3, then dim(Sym>Kl,)’= = 0. So, the dimension of the middle #-adic coho-
mology is 0. However, the trace of Frob, on H! G Sym?®Kl,) is at the same time 0 and

—16, which is absurd.

ét,mid ( Wl,ﬁp ’
In conclusion, we deduce that Sw(Sym>Kl,) = 5 and the representation (Mi)f is unramified at 2.
As a consequence, the conductor N is 20.15=15. O

By the p-adic comparison theorem and our computation of the Hodge numbers for the motive
Mi, we determine that the Hodge-Tate weight of {(Mi)f(6)} is (0,2). Observe that these Galois
representations (Mi),f are orthogonal, as we have a symmetric perfect paring on the motive Mi
given in Proposition 3.5. According to [28, 1.4(2)], the associated Galois representation {(Mi)f(6)}
corresponds to a modular form f =g+ Y a,q" € S;(15, €r) of complex multiplication for
some characterse; : Z /15Z — C*. Moreover, for any p & {3, 5} U {¢}, we deduce that

a;(p) = Tr(Frob! | (M3),(6)) = det((M3),(6)) ™ - Tr(Frob,, | (M3),(6))
=g I%(mi(p) +1+p”+p).

At this point, the remaining task is to identify the modular form. We already know that this
modular form has level 15 and weight 3.

Lemma 5.8. The character ¢ is the Legendre symbol (1'—5).
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Proof. Using LMFDB, we find that there are only two modular forms with level 15 and weight 3.
Their characters are both given by the Legendre symbol (ﬁ). O

To summarize, we have determined that the desired modular form has weight k = 3, level 15,
and nebentypus ¢, = (E). However, there are still two possibilities in LMFDB. To determine the
correct one, we use the Frobenius trace a;(2) = —1 of (Mi)f(6) in Section A.2. Our search in the
LMFDB database yields a unique match: the modular form labeled 15.3.d.b. O

52.4 | Sym*Kl,

The two-dimensional motive Mj is defined over Q, pure of weight 13, and equipped with an
antisymmetric perfect self-pairing.

Proposition 5.9. There exists a (unique) modular form f in S¢(I';(10)), such that for each prime
p & {2, 5}, the Fourier coefficient a¢(p) satisfies

1
ap(p) = —?(mi(p) +1+4p*+p*+p* +2p°),

where mj( p) is the symmetric power moment of Sym*Kl,. In particular, the label of the corresponding
modular form is 10.6.a.a. in the database LMFDB.

Proof. By Theorems 4.5, the representation (Mj)f is unramified at p # 2,5, as ]C@/F in Sec-

tion 4.1.1 is smooth in this case, that is, d(4, 4, p) — d(4,4) = 0in (4.3). Moreover, we dedpuce from
Theorem 4.15 that the representation (Mj)f is possibly wildly ramified at p = 2, and is tamely
ramified at p = 5. According to Corollary 4.26 and Remark 5.3, the conductor of the compatible
family {(Mj)f}f is of the form N = 25 - 5for some 0 < s < 8.

By the Hodge symmetry, there exists an integer h €{0,1,...,6} such that the Hodge
numbers hP13-P of Mj arelif p = hor 13 — h, and 0 otherwise. Hence, the Hodge-Tate weights
of (M}),(13 — h) are (0,13 — 2h).

The determinant of the Galois representations (M;),(13 — h) is an odd character )(Cljc‘”‘,
according to Proposition 5.4 and the Chebotarev density theorem. Then, the existence of the
modular form is provided by Theorem 5.2. It follows that for any p ¢ {2, 5, ¢},

- 1
as(p) = Tr(Frob,' | (M),(13 — h)) = —ﬁ(mj(p) +1+p*+p’+p*+2p°).

At last, we can compute the Fourier coefficients a f(3) =-26-3*"anda f(7) =-22-7*"by
numerical results in Section A.2.2. Notice that LMFDB contains the complete list of modular forms
when k? - N < 40000. Wetry0 < h < 6and 0 < s < 8onebyone. If (s, h) = (8,0), (8,1),(8,2)(8,3),
(8,4), (7,0), (7,1), (7,2), (7,3), (6,0), or (6,1), we have k? - N > 40000. In this case, the database
LMFDB is insufficient for our needs. So, we follow the appendix in [41] to compute the space
of cuspidal new modular symbols over the finite field F,. We find that for some primes p, the
numbers a;(p) are not roots of the characteristic polynomials of the Hecke operators T ,, as shown
in the table in Section A.2.2. In the remaining possible cases, we find two remaining modular
forms in the database of weight 6 with the prescribed Fourier coefficients. By considering the
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level, there is only one left with the label 10.6.a.a. in LMFDB because the other one is of level
400 O

Remark 5.10. We deduced from the proof above that the nonzero Hodge numbers of the de Rham
realization of M} are h*° = h®* = 1. Although the Hodge numbers were not computed directly
in [32], they can still be calculated by following an argument similar to that of Mgk .

52.5 | Sym’Kl;

The motive Mg is defined over Q, pure of weight 13, and equipped with an antisymmetric perfect
pairing. It has dimension 2. According to [32, Thm. 1.2], the Hodge numbers h?'13~P of its de Rham
realization are 1if p = 5 or 8, and O in other cases. We aim to show that the compatible family of
Galois representations {(Mg)f(S)} is modular.

Proposition 5.11. There exists a (unique) modular form f in S,(T'y(33)), such that for each prime
p & {3,11}, the Fourier coefficient a;(p) satisfies

1
ap(p) = —I;(mé(p) +1+p°+p’+p*+p%, (5.12)

where mg (p) is the symmetric power moment of Sym°Kl,. In particular, the label of the corresponding
modular form is 33.4.a.b in the database LMFDB.

Proof. The representation (Mg)f is unramified at p if p & {3, 5,11, ¢} by Theorem 4.5 and (4.3).
According to Corollary 4.26, the conductor of {(Mg)K(S)} is of the form 3%-5!-11¢ for some
0<s,e<2and0<t.

Lemma 5.13. If5 # ¢, the representation (Mg)f is unramified at 5.

Proof. At p =5, the Swan conductor of Sym>Kls is at most 7. Given that the monodromy

group of Kl; is SL; and the symmetric power of standard representation of SLs; remains

irreducible, the zeroth cohomology Hgt(GmF ,Sym?>Kl;) vanishes. By the exact sequence (2.5)
> p

and the Grothendieck-Ogg-Shafarevich formula, we obtain that

dimH}, (G, = ,Sym®Kl;) = Sw(Sym*Kl;) — 5 — dim(Sym’Kl;)"~.

5 i 9
ét,mid m,Fp

Consequently, we have 5 < Sw(Sym>Kls) < 7. According to the numerical results in Section A.3,
the trace of H}, . d(Gm,FP’ Sym?Kl;) at p = 5 is given by
_ (mg(p) +14+p*+pP+p*+p°+Tr <Frobp | (Sym3Kls)Ia))
=—4.5 — Tr(Frobp | (Sym3K15)IE>.

Now we proceed by examining each possible value of Sw(Sym?*KI;) as follows.
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* If Sw(Sym?®Kls) = 7, the sheaf Sym>Kls only has one slope (=1/5) at co. We deduce that the
dimension of (Sym*Kls)'= is 0. Thus, the dimension of the middle #-adic cohomology of
Sym?>Kl; is 2. By Remark 4.12, the representation (Mg)f is unramified at 5.

* If Sw(Sym>Kl;s) = 6, then dim(Sym>Kl;)/& < 1. We consider two cases.

(1) Assume that dim(Sym>Kl;)/& = 1, then the middle #-adic cohomology vanishes. The trace

of Frobenius on H;[ mid (G F, ,Sym’Kl;) at p = 5is 0. So, we have

0= —4.5 —Tr(Frob,, | (Sym’Kls)'=).

Since (Sym?®Kl;)'= is pure of weight 12 and of dimension 1, this is impossible.
(2) Assume that dim(Sym>Kls)'s = 0, the middle #-adic cohomology is one-dimensional. The

trace of H! Sym?®Kls) at prime p = 5 is —4 - 5°. Since H! Sym>*Kls)

tmld( mF’ tmd( mF’

is pure of weight 13 and of dimension 1, it leads to a contradiction.
o If SW(Sym3K15) = 5, then dim(Sym3K15)IE = 0. So, the dimension of the middle #-adic coho-
mology of Sym®Kls is 0. The trace of H! Sym®Kls) at prime p = 5is at the same time

0 and —4 - 5°, which is absurd.

tmld( m[F ’

In conclusion, we have SW(Sym3K15) = 7 and the representation (Mg)f is unramified at 5. O

Consider the Galois representations (Mg)f(S). The Hodge-Tate weights of (M;)f(S) are (0,3).
Their determinants are the odd characters )(fy . by Proposition 5.4 and the Chebotarev density
theorem. The existence of the modular form is guaranteed by Theorem 5.2. Consequently, we
deduce (5.12) for any p ¢ {3,11,¢}.

Thus, the modular form we are seeking has weight 4, and its level is of the form
N r= 3%.11° £ 1089, with 0 < s,e < 2. Furthermore, we compute the Fourier coefficients
a(2) = —1 and a(5) = —4 in Section A.3. Given this information, there is only one remaining
modular form, with weight 4 and level N = 33, which is labeled as 33.4.a.b in the LMFDB
database. O

526 | KIPY

The motive Mgz’l) is defined over Q, pure of weight 9 and equipped with an antisymmetric perfect
pairing. It has dimension 2, and the Hodge numbers hP°~P of its de Rham realization is 1if p = 4
or 5 and is 0 otherwise by [32, Prop. 5.20]. We want to show that the compatible family of Galois
representations {(Mgz’l)) ,(5)} is modular.

Proposition 5.14. There exists a (unique) modular form f € S,(T'((14)), such that for each prime
p & {2, 3,7}, the Fourier coefficient a, satisfies

ar(p) = == ( $Dp)+p+p?+pY)), (5.15)

where mgz’l)( p) is the moment of the sheaf Kl(32’1). In particular, this modular form is labeled 14.2.a.a
in the database LMFDB.
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Proof. The sheaf Kl;z’l) is tamely ramified at 0 and wildly ramified at co. By Grothendieck-Ogg-
Shafarevich formula (2.4), the dimension of the #-adic cohomology is equal to the Swan conductor
at oo. Similar to Proposition 2.32, since Klgz’l) C K1‘3X’4 and ¢5 acts on (Kl‘f"l)7700 freely, we can

compute that the Swan conductor of K1(32,1) at oo is 5 when p = 3. By the exact sequence (2.5),
Proposition 2.17, and Proposition 2.19, we have

2 p#2,7
1 p=27

P s
ét,mid m,[Fp

dimH! (G, - Kl(j’”)={

and
Tr(Frob,, (M), @) = —p~* P (p) + p + p* + p*).

By Remark 4.12 and Corollary 4.26, the representation (M;z’l))f is unramified at p ¢ {2,7, ¢} and
the conductor of the compatible family {(Mgz’l))f 1, is 14.

Using Proposition 5.4 and the Chebotarev density theorem, the determinant of (M(Sz’l))f(s) is
)(C‘ylc which is odd. Then, Theorem 5.2 shows the existence of the modular form and we deduce
(5.15) for any p # 2,7,¢.

At last, by computations of Fourier coefficients a;(p) in Section A.1.2 for p <23, we can
determine the modular form in the database LMFDB. O

527 | KIP?

The motive M(32’2) is defined over Q, pure of weight 13 and equipped with an antisymmetric perfect
pairing in Proposition 3.5.

Proposition 5.16. There exists a (unique) modular form f = q + Z;‘;z a,q" € S4(Ty(6)), such that
for each prime p & {2, 3}, the Fourier coefficient a(p) satisfies

1
as;(p) = —E<m§2’2)(p) +p*+p*+2pt + 2p6),

where mf’z)( p) is the moment of the sheaf K1(32’2). In particular, this modular form is labeled 6.4.a.a
in the database LMFDB, the same as the modular form corresponding to Sym°Kl,.

Proof. The sheaf Klgz,z) is tamely ramified at O and wildly ramified at co. By Proposition 2.17,
Proposition 2.19, and the long exact sequence (2.5), we obtain that

2 #2,3
. 1 2.2\ _ p )
dim Hét,mid (Gmﬁp’ K13 ) - {1 p= 2

and

Tr(Frob,, (MP?),(5)) = —p~(m$?(p) + p* + p* +2p* +2p°)
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if p # 2,3. By Remark 4.12, the set of bad primes S is a subset of {2, 3}, and dim(M(;’z)) s =2.

According to Theorem 4.5 and Corollary 4.26, the Galois representation (M(32’2) ), is tamely rami-
fied at p = 2 and its Artin conductor at p = 2 is 1. As a consequence of Remark 5.3, the conductor
of {(Mgz’z))f}f is of the form N = 2 - 35 for some 0 < s < 5.

By the Hodge symmetry, there exists an integer h € {0,1,...,6} such that the Hodge num-
bers hP13=P are 1 if p = h or 13 — h, and are 0 otherwise. Hence, the Hodge-Tate weights of
M$?),(13 — h) are (0,13 — 2h).

By Proposition 5.4 and Chebotarev density theorem, we have det(M(z’z)

3
determinant of (Mgz’2))f(13 —h) is )(01;;2h, which is an odd character. Therefore, Theorem 5.2
guarantees the existence of a modular form of weight 14 —2h and of level 2 -3 such that

(Mgz’z))f(B —h) = p; .. It follows that for any p & S U {¢3,

)¢ = Xy - Thus, the

_ 1
a;(p) = Tr(Frob." | M%), (13- h) = —E(mgz’z)(p) +p?+ p* +2p* +2p°).

To determine the modular form, we use a similar argument to that in Proposition 5.9. We test
the combinations 0 < & < 6 and 0 < s < 5 one by one. If (s, h) = (5,0), (5,1) or (5,2), we compute
the space of cuspidal new modular symbols over the finite field F,. We find that for some primes
p, the numbers a;(p) are not roots of the characteristic polynomials of the Hecke operators T',,
as shown in the table in Section A.1.2. Therefore, (s, h) # (5,0),(5,1) or (5,2), and we proceed to
search the modular form within LMFDB. The remaining modular form has weight 4 and level 6,
corresponding to (s, k) = (1, 5) in this case. O

Remark 5.17. The nonzero Hodge numbers of the de Rham realization of Mgm) are h>8 = h®° = 1.
We cannot calculate these using the methods for [32, Thm. 1.2], as the nilpotent part of the local
monodromy of the connection K1(32’2) at 0 is not a direct sum of Jordan blocks of different sizes
(there are two blocks of size 4).

5.2.8 | A conjecture

One interesting corollary of Proposition 5.16 is that for p {6, the moments of the sheaves
Sym®Kl, and KI(SZ’Z), as they both correspond to the modular form with label 6.4.a.a. As a direct
consequence, we have the identity

m?(p) - p*mS(p) = —2p° — 2p* - p*. (5.18)

Moreover, we have isomorphisms of #-adic Galois representations (Mg) (=3) (Mgz’z))f, which
leads us the following conjecture.

Conjecture 5.19. The two motives Mg(—S) and M(32’2) are isomorphic.

APPENDIX

A | COMPUTATION OF MOMENTS

In this article, we used several numerical results computed using the software Sagemath [38].
This appendix explains the algorithms and all codes can be found on my web page. We fix an
embedding ¢ : Q, < C and identify #-adic numbers with their images in C via .
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A.1 | Computations of m’3‘(p), mgz’l)( p) and mgz’z)(p)
All m;‘(p)
For a prime number p, after Deligne [9, Somme. Trig.], we know that for each a € [F;,
there exist three algebraic numbers «,, 8, and y,, of absolute value p, such that
si(@) =a, + B, +7, =Kls(a; p) and s;(a) = a, - B, - ¥4 = p°. Then, the degree two elementary
symmetric polynomials are

$:(a) 1=,y + BaVa T Vala = p3(oc‘;1 + B;l + y(;l) = p(aa + Ea + 7_/(1) = p - Kl;(a; p).

The kth symmetric power moments of Kl, are integers of the form

mi(p) 1= Y Y, alBlrh.

ae[F;f i+j+k=k

which can be computed using the value of elementary symmetric polynomials. For example, the
third, fourth, and sixth symmetric power moments can be computed by

m3(p) = Y (s:(a)’ — 25,(a)s,(a) + p*),
m;l(P) = 2(31(0)4 —35,(a)’s,(a) + 5,(a)* + 2p°s,(a)),
mg(p) = 2(31(0)6 - 531(0)452 + 651(0)232(0)2 - Sz(a)3 + 413331(a)3 - 6p3S1(a)s2(a) +p°,

respectively. Hence, we obtain from (2.5) that

1
a3(p) = —E(m;‘(p) +1+p*+ p*)

is the trace of the middle cohomology H;t’mi d(Gm,Fp’ Sym4Kl3). We list some numerical results
as follows.
Primes
3 5
m3(p) -10
aj(p) -2 —12
m$(p) —820

Al2 mgz’l)(p) and mgz’z)(p)
By (2.10), the moment of KI;/LZ‘S1 is the difference of the moment of Sym?Kl; ® A%Kl; and that of
Kl;(—3). Hence, we obtain

m*(p) = ¥ (51(a)s,(a) — sX(a) — ps ().
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Let agz’l)( p) be the traces of the middle cohomology H! . (G KI(SZ’U), which can be computed

ét,mid > UmFy,’
by

alP(p) = —p~(mPV(p) + p + p* + p).

As for K1(32’2), we conclude similarly from (2.10) that the moment of Kl(32’2) is

mP(p) = Y ((51(a)* = s,(@)(s(@)* = p*s;(a)) = p*s,(a) - 5,(a)).

a

Let agz’z)(p) be the traces of the middle cohomology Hi ¢ mi 167 Klgz’z)). Then, we obtain

mFp,’
a?(p) = —p~(m$?(p) + p* + p* +2p* +2p%).

Some numerical results are as follows.

Primes

5 7 11 13 17 19 23
al™ 0 0 —4 6 2 0
al? 6 -16 12 38 —126 20 168

Moreover, we compute the space of cuspidal new modular symbols over some finite fields F,
and verify whether the prescribed traces are roots of the characteristic polynomials of T',. Below
are some numerical results.

Level N weight k Prime p Finite field F, T,(az(p))
2.3 14 5 Fas 1

2-3° 12 5 Fys -1

2.3 10 5 Fis 5

A.2 | Computation of m;(p) and m;(p)

A21 m3(2)

Here, we compute the third symmetric power moment at p = 2. Using Sagemath [38], we know
that K1,(1;2) = 1 and Kl,(1;4) = 11. Let a4, ..., a5 be the eigenvalues of Frob, acting on (Kl,);
and let sy, ..., s, be the elementary symmetric polynomials on «;. By the definition of K1,, we have

s =) o = —KI,(1;2) = -1,

si =25, = ) a? = =Kl (1;4) = —11.

Therefore, s; = —1 and s, = 6. Moreover, since detKl, = E(—6), we have s, = [[«; = p°.

Noticing that a; - @ = p?, we have s; = p3s; — 8. Then, the moments can be computed by

mi(z) = Z ooy = si — 28,5, + 53 =3.
i,j.k
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It follows that
1
a’(2) = —?(mi(p) +14p*+p¥=-1.

A.2.2 m}(p) and mj(p)
Let ay(a), ..., a4(a) be the eigenvalues of Frob,, acting on (Kl,)z for a € [F; and by s;(a), ..., s4(a)
the elementary symmetric polynomials on «;(a). By the definition of Kl,, we have

s1(@) = ) a;(@) = —Kly(a; p) and 51(a)” = 25,(a) = Y &;(@)* = —Kly(a; p*).

Furthermore, since det K1, = E(—6), we have s,(a) = [] «; = p°. Noticing that «;(a) - a;(a) = p>,
we have s;(a) = p3s,(a). Then, the moments can be computed as

mi(p) = Y (s1(@)* - 35,()s,(@) + 5,(@) + 2p°s, (@)s (@) — pO).

a

At last, the traces of the middle cohomology H! . (G Sym*Kl,) are

ét,mid* "m.F,’

1
aj(p) = —?(mi(p) +1+p*+p’+p*+2p°).

Some numerical results are listed below.

Primes

a;(p) -1
a;(p) —26 —22

Similar to the end of Section A.1.2, we list some numerical results when N - k% > 40 000.

Level N weight k Prime p Finite field F, T, (as(p))
28.5 14 7 Fi 3
28.5 12 3 Fis 10
28.5 10 7 Fi 3
28.5 7 Fi; 5
28.5 6 7 Fi 4
27-5 14 3 Fi 8
275 12 7 Fi, 8
27.5 10 3 Fun 5
27.5 8 7 Fiy 3
26.5 14 3 Fim 3
26.5 12 3 Fao 2
RIGHTS LI N K3
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A3 | Computation of m:(p)
Let a;(a), ..., as(a) be the eigenvalues of Frob,, acting on (Kls)z for a € [F; and by s;(a), ..., ss(a)
the elementary symmetric polynomials on «;(a). By the definition of K15, we have

s.(a) = 2 a;(a) = Kls(a; p) and sl(a)2 —2s,(a) = 2 oci(a)2 = Kls(a;pz).

Furthermore, since det Kl; = E(—10), we have ss(a) = [[ o; = p'°. Because o;(a) - a;(a) = p*, we
have s;(a) = p?s,(a) and s, = p®s;(a). Then, the moments can be calculated as

mip)= Y, Y, a(@a;(@x(a)= Zsl(af—2s1(a)s2(a)+3s3(a)

ae[FX i<j<k

At last, the traces of middle cohomology H Sym3Kl;) are

tmld( m[F’
ai(p) = ——(ms(p)+1+p +p’+p*+p°).

The values of moments and Frobenius traces at p = 2, 5 are listed below.

Primes

2 5
mi(p) —61 3901
ag (P ) -1 —4
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